Changes

Jump to navigation Jump to search
no edit summary
Line 89: Line 89:  
:<math>
 
:<math>
 
\langle J M \epsilon|\mathbb{R}^{-1} V \mathbb{R}|
 
\langle J M \epsilon|\mathbb{R}^{-1} V \mathbb{R}|
\epsilon_\gamma ; J_R \lambda_R \epsilon_R ; t, s; \Omega_0 \rangle =
+
\epsilon_\gamma ; \lambda_R \epsilon_R ; t, s; \Omega_0 \rangle =
 
\epsilon \epsilon_\gamma \epsilon_R \langle J M \epsilon|V|
 
\epsilon \epsilon_\gamma \epsilon_R \langle J M \epsilon|V|
\epsilon_\gamma ; J_R \lambda_R \epsilon_R ; \Omega_0 \rangle
+
\epsilon_\gamma ; \lambda_R \epsilon_R ; \Omega_0 \rangle
 
</math>
 
</math>
   Line 103: Line 103:  
:<math>
 
:<math>
 
\langle J M \epsilon|V|
 
\langle J M \epsilon|V|
\epsilon_\gamma ; J_R \lambda_R \epsilon_R ; \Omega_0 \rangle
+
\epsilon_\gamma ; \lambda_R \epsilon_R ; \Omega_0 \rangle
= v\left(J,m,\epsilon;\epsilon_\gamma;J_R,\lambda_R,\epsilon_R \right)
+
= v\left(J,m,\epsilon;\epsilon_\gamma; \lambda_R,\epsilon_R \right)
 
</math>
 
</math>
   Line 213: Line 213:  
=\sum_{R,\lambda_R,\epsilon_R;\lambda_{b_1},\lambda_\omega,\lambda_\rho}
 
=\sum_{R,\lambda_R,\epsilon_R;\lambda_{b_1},\lambda_\omega,\lambda_\rho}
 
\langle \mathbf{q}_\pi 0 0; \mathbf{q}_\rho \lambda_\rho 0; \mathbf{q}_\omega \lambda_\omega 0; \mathbf{q}_{b1}\lambda_{b1} 0
 
\langle \mathbf{q}_\pi 0 0; \mathbf{q}_\rho \lambda_\rho 0; \mathbf{q}_\omega \lambda_\omega 0; \mathbf{q}_{b1}\lambda_{b1} 0
| UV | \epsilon_\gamma; J_R \lambda_R \epsilon_R; \Omega_0\rangle
+
| UV | \epsilon_\gamma; \lambda_R \epsilon_R; \Omega_0\rangle
 
</math>
 
</math>
 
:::::::::<math> \times
 
:::::::::<math> \times
\langle J_R \lambda_R \epsilon_R; \Omega_0;\mathbf{p_f}, \epsilon_f | W | \mathbf{p_i}, \epsilon_i\rangle
+
\langle \lambda_R \epsilon_R; \Omega_0;\mathbf{p_f}, \epsilon_f | W | \mathbf{p_i}, \epsilon_i\rangle
 
</math>
 
</math>
   Line 237: Line 237:  
:::::::::<math>\times
 
:::::::::<math>\times
 
\langle J_X M_X \epsilon_X | V |
 
\langle J_X M_X \epsilon_X | V |
\epsilon_\gamma; J_R \lambda_R \epsilon_R; \Omega_0\rangle
+
\epsilon_\gamma; \lambda_R \epsilon_R; \Omega_0\rangle
 
</math>
 
</math>
 
:::::::::<math>\times
 
:::::::::<math>\times
\langle J_R \lambda_R \epsilon_R; \Omega_0;\mathbf{p_f}, \epsilon_f | W | \mathbf{p_i}, \epsilon_i\rangle
+
\langle \lambda_R \epsilon_R; \Omega_0;\mathbf{p_f}, \epsilon_f | W | \mathbf{p_i}, \epsilon_i\rangle
 
</math>
 
</math>
 
Parity conservation requires that <math>\epsilon_X=\epsilon_\gamma \epsilon_R</math> and <math>\epsilon_R=\epsilon_i\epsilon_f</math>.  The last two matrix elements in the expression above for <math>T_{fi}</math> not known ''a priori'', so we parameterized them into a pair of unknown functions ''v(s,t)'' and ''w(s,t)''.  
 
Parity conservation requires that <math>\epsilon_X=\epsilon_\gamma \epsilon_R</math> and <math>\epsilon_R=\epsilon_i\epsilon_f</math>.  The last two matrix elements in the expression above for <math>T_{fi}</math> not known ''a priori'', so we parameterized them into a pair of unknown functions ''v(s,t)'' and ''w(s,t)''.  
Line 246: Line 246:  
v^{X,M_X,\epsilon_X}_{\lambda_R,\epsilon_R}(s,t) =  
 
v^{X,M_X,\epsilon_X}_{\lambda_R,\epsilon_R}(s,t) =  
 
\langle J_X M_X \epsilon_X | V |
 
\langle J_X M_X \epsilon_X | V |
\epsilon_\gamma; J_R \lambda_R \epsilon_R; \Omega_0\rangle
+
\epsilon_\gamma; \lambda_R \epsilon_R; \Omega_0\rangle
 
</math>
 
</math>
 
:<math>\displaystyle
 
:<math>\displaystyle
 
w_{\epsilon_R;\epsilon_i} =
 
w_{\epsilon_R;\epsilon_i} =
\langle J_R \lambda_R \epsilon_R; \Omega_0;\mathbf{p_f}, \epsilon_f | W | \mathbf{p_i}, \epsilon_i\rangle
+
\langle \lambda_R \epsilon_R; \Omega_0;\mathbf{p_f}, \epsilon_f | W | \mathbf{p_i}, \epsilon_i\rangle
 
</math>
 
</math>
   Line 330: Line 330:  
T_{\pm 1}=\sum_{R,\lambda_R;\lambda_{b_1},\lambda_\omega,\lambda_\rho}
 
T_{\pm 1}=\sum_{R,\lambda_R;\lambda_{b_1},\lambda_\omega,\lambda_\rho}
 
\langle \mathbf{q}_\pi 0 0; \mathbf{q}_\rho \lambda_\rho 0; \mathbf{q}_\omega \lambda_\omega 0; \mathbf{q}_{b1}\lambda_{b1} 0
 
\langle \mathbf{q}_\pi 0 0; \mathbf{q}_\rho \lambda_\rho 0; \mathbf{q}_\omega \lambda_\omega 0; \mathbf{q}_{b1}\lambda_{b1} 0
| U | (1\; \pm 1)_{\mathrm{lab}}; J_R \lambda_R \epsilon_R;s,t \rangle
+
| U | (1\; \pm 1)_{\mathrm{lab}}; \lambda_R \epsilon_R;s,t \rangle
 
</math>
 
</math>
  

Navigation menu