Changes

Jump to navigation Jump to search
no edit summary
Line 82: Line 82:     
=== Production ===
 
=== Production ===
 +
 +
==== Photon-Reggeon-Resonance vertex ====
 +
 +
Consider the production of the resonance from the photon and reggeon in the reflectivity basis, the eigenstates of the reflectivity operator. (This operator is a combination of parity and <math>\pi</math> rotation about the normal to the production plane (usually y axis.)
 +
<br><math>\mathbb{R}| J m \rangle = P(-1)^{J-m} | J \; -m \rangle </math>
 +
 +
The eigenstates of the reflectivity operator are formed as follows:
 +
<br><math>| J m \epsilon \rangle = | J m \rangle + \epsilon P (-1)^{J-m} | J \; -m \rangle    </math>
 +
 +
such that
 +
 +
<br><math>\mathbb{R}| J m \epsilon \rangle =  \epsilon (-1)^{2J} | J m \epsilon \rangle </math>
 +
 +
 +
The photon linear polarization states turn out to be eigenstates of reflectivity as well:
 +
<br>Let x (y) polarization states be denoted with - (+)
 +
 +
<math>|\mp\rangle = \sqrt{\frac{\pm 1}{2}} \left( |1 -1\rangle \mp |1 +1\rangle \right)</math>
 +
 +
<math>\mathbb{R}|\mp\rangle = \mp 1 |\mp\rangle </math>
 +
 +
 +
Since the production Hamiltonian should commute with reflectivity:
 +
<math>V=\mathbb{R}^{-1} V \mathbb{R}</math>
 +
 +
<math>
 +
\langle J m \epsilon|\mathbb{R}^{-1} V \mathbb{R}|
 +
\mp ; J_R \lambda_R \epsilon_R ; t, s; \Omega_0 \rangle =
 +
\epsilon (\mp 1) \epsilon_R \langle J m \epsilon|V|
 +
\mp ; J_R \lambda_R \epsilon_R ; t, s; \Omega_0 \rangle
 +
</math>
 +
 +
Acting with the reflectivity operator on initial and final state brings out the reflectivity eigenvalues of the
 +
resonance, photon and reggeon. This result leads to a constraint:
 +
<br><math>\epsilon = \mp \epsilon_R</math>
 +
 +
    
==== Proton-Reggeon vertex ====  
 
==== Proton-Reggeon vertex ====  
Line 90: Line 127:  
<tr>
 
<tr>
 
<td><math>
 
<td><math>
\langle \Omega_R \lambda_R \lambda_p | W | J_T m_T \rangle
+
\langle \Omega_R ; J_R \lambda_R \epsilon_R; J_P \lambda_p | W | J_T m_T \rangle
 
=
 
=
\langle \Omega_R \lambda_R \lambda_p  
+
\langle \Omega_R ; J_R \lambda_R \; \mp\epsilon; \textstyle{\frac{1}{2}}\;\lambda_p  
| J m \lambda_R \lambda_p \rangle \langle J m \lambda_R \lambda_p |
+
| \textstyle{\frac{1}{2}}\;m_T \lambda_R \lambda_p \rangle \langle \textstyle{\frac{1}{2}}\;m_T \lambda_R \lambda_p |
W | J_T m_T \rangle
+
W | \textstyle{\frac{1}{2}}\;m_T \rangle
 
</math></td>
 
</math></td>
 
<td>
 
<td>
Line 104: Line 141:  
<tr>
 
<tr>
 
<td><math>
 
<td><math>
=\sqrt{\frac{2J+1}{4\pi}} D_{m_T (\lambda_R-\lambda_p)}^{J_T *} (\Omega_R,0)   w_{\lambda_R , \lambda_p}^{J_T}
+
=\frac{1}{\sqrt{2\pi}} \left[
 +
D_{m_T (\lambda_R-\lambda_p)}^{\frac{1}{2} *} (\Omega_R,0) \; w_{\lambda_R\; \lambda_p}
 +
\mp
 +
\epsilon P_R (-1)^{J_R-\lambda_R}
 +
D_{m_T (-\lambda_R-\lambda_p)}^{\frac{1}{2} *} (\Omega_R,0) \; w_{\lambda_R\; -\lambda_p}
 +
\right]
 
</math></td>
 
</math></td>
 
<td>
 
<td>
Line 112: Line 154:  
</table>
 
</table>
   −
  −
==== Photon-Reggeon-Resonance vertex ====
  −
  −
Consider the production of the resonance from the photon and reggeon in the reflectivity basis, the eigenstates of the reflectivity operator. (This operator is a combination of parity and <math>\pi</math> rotation about the normal to the production plane (usually y axis.)
  −
<br><math>\mathbb{R}| J m \rangle = P(-1)^{J-m} | J \; -m \rangle </math>
  −
  −
The eigenstates of the reflectivity operator are formed as follows:
  −
<br><math>| J m \epsilon \rangle = | J m \rangle + \epsilon P (-1)^{J-m} | J \; -m \rangle    </math>
  −
<br> such that
  −
<br><math>\mathbb{R}| J m \epsilon \rangle =  \epsilon | J m \epsilon \rangle </math>
  −
  −
  −
The photon linear polarization states turn out to be eigenstates of reflectivity as well:
  −
<br>Let x (y) polarization states be denoted with - (+)
  −
<br><math>|\mp\rangle = \sqrt{\frac{\pm 1}{2}} \left( |1 -1\rangle \mp |1 +1\rangle \right)</math>
  −
<br><math>\mathbb{R}|\mp\rangle = \mp 1 |\mp\rangle </math>
  −
  −
  −
Since the production Hamiltonian should commute with reflectivity:
  −
<br><math>V=\mathbb{R}^{-1} V \mathbb{R}</math>
  −
<br><math>
  −
\langle J m \epsilon|\mathbb{R}^{-1} V \mathbb{R}|
  −
\mp ; J_R \lambda_R \epsilon_R ; t, s; \Omega_0 \rangle =
  −
\epsilon (\mp 1) \epsilon_R \langle J m \epsilon|V|
  −
\mp ; J_R \lambda_R \epsilon_R ; t, s; \Omega_0 \rangle
  −
</math>
  −
  −
Acting with the reflectivity operator on initial and final state brings out the reflectivity eigenvalues of the
  −
resonance, photon and reggeon. This result leads to a constraint:
  −
<br><math>\epsilon = \mp \epsilon_R</math>
       
1,004

edits

Navigation menu