Changes

Jump to navigation Jump to search
no edit summary
Line 80: Line 80:     
== Application ==
 
== Application ==
 +
 +
=== Production ===
 +
 +
==== Proton-Reggeon vertex ====
 +
 +
The amplitude of target proton's emission of an exchange particle, a reggeon, in particular direction and helicity projections can be written as:
 +
 +
<table>
 +
<tr>
 +
<td><math>
 +
\langle \Omega_R \lambda_R \lambda_p | W | J_T m_T \rangle
 +
=
 +
\langle \Omega_R \lambda_R \lambda_p
 +
| J m \lambda_R \lambda_p \rangle \langle J m \lambda_R \lambda_p |
 +
W | J_T m_T \rangle
 +
</math></td>
 +
<td>
 +
transition amplitude for <math>p \rightarrow R + p'</math>
 +
in the direction <math>\Omega_R</math> w.r.t. the coordinate
 +
system defined in the resonance RF.
 +
</td>
 +
</tr>
 +
<tr>
 +
<td><math>
 +
=\sqrt{\frac{2J+1}{4\pi}} D_{m_T (\lambda_R-\lambda_p)}^{J_T *} (\Omega_R,0)  w_{\lambda_R , \lambda_p}^{J_T}
 +
</math></td>
 +
<td>
 +
follows from relations given above
 +
</td>
 +
</tr>
 +
</table>
 +
 +
 +
==== Photon-Reggeon-Resonance vertex ====
 +
 +
Consider the production of the resonance from the photon and reggeon in the reflectivity basis, the eigenstates of the reflectivity operator. (This operator is a combination of parity and <math>\pi</math> rotation about the normal to the production plane (usually y axis.)
 +
<br><math>\mathbb{R}| J m \rangle = P(-1)^{J-m} | J \; -m \rangle </math>
 +
 +
The eigenstates of the reflectivity operator are formed as follows:
 +
<br><math>| J m \epsilon \rangle = | J m \rangle + \epsilon P (-1)^{J-m} | J \; -m \rangle    </math>
 +
<br> such that
 +
<br><math>\mathbb{R}| J m \epsilon \rangle =  \epsilon | J m \epsilon \rangle </math>
 +
 +
 +
The photon linear polarization states turn out to be eigenstates of reflectivity as well:
 +
<br>Let x (y) polarization states be denoted with - (+)
 +
<br><math>|\mp\rangle = \sqrt{\frac{\pm 1}{2}} \left( |1 -1\rangle \mp |1 +1\rangle \right)</math>
 +
<br><math>\mathbb{R}|\mp\rangle = \mp 1 |\mp\rangle </math>
 +
 +
 +
Since the production Hamiltonian should commute with reflectivity:
 +
<br><math>V=\mathbb{R}^{-1} V \mathbb{R}</math>
 +
<br><math>
 +
\langle J m \epsilon|\mathbb{R}^{-1} V \mathbb{R}|
 +
\mp ; J_R \lambda_R \epsilon_R ; t, s; \Omega_0 \rangle =
 +
\epsilon (\mp 1) \epsilon_R \langle J m \epsilon|V|
 +
\mp ; J_R \lambda_R \epsilon_R ; t, s; \Omega_0 \rangle
 +
</math>
 +
 +
Acting with the reflectivity operator on initial and final state brings out the reflectivity eigenvalues of the
 +
resonance, photon and reggeon. This result leads to a constraint:
 +
<br><math>\epsilon = \mp \epsilon_R</math>
 +
 +
 +
 +
 +
=== Decay ===
    
<math>
 
<math>
Line 142: Line 209:  
<math>
 
<math>
 
A^{J_X}=\sum_{\lambda_{b_1},\lambda_\omega,\lambda_\rho}  
 
A^{J_X}=\sum_{\lambda_{b_1},\lambda_\omega,\lambda_\rho}  
\langle \Omega_X 0 \lambda_{b_1} | U | J_X m_X \rangle C_X(L_X) k^{L_X}  
+
\langle \Omega_X 0 \lambda_{b_1} | U_X | J_X m_X \rangle C_X(L_X) k^{L_X}  
\langle \Omega_{b_1} 0 \lambda_\omega | U | 1 , m_{b_1}=\lambda_{b_1} \rangle C_{b_1}(L_{b_1}) q^{L_{b_1}}  
+
\langle \Omega_{b_1} 0 \lambda_\omega | U_{b_1} | 1 , m_{b_1}=\lambda_{b_1} \rangle C_{b_1}(L_{b_1}) q^{L_{b_1}}  
\langle \Omega_\omega 0 \lambda_\rho | U | 1 , m_\omega=\lambda_\omega \rangle C_\omega(L_\omega) u^{L_\omega}  
+
\langle \Omega_\omega 0 \lambda_\rho | U_\omega | 1 , m_\omega=\lambda_\omega \rangle C_\omega(L_\omega) u^{L_\omega}  
\langle \Omega_\rho 0 \lambda_\rho | U | J_\rho , m_\rho=\lambda_\rho \rangle C_\rho(L_\rho) v^{L_\rho}  
+
\langle \Omega_\rho 0 \lambda_\rho | U_\rho | J_\rho , m_\rho=\lambda_\rho \rangle C_\rho(L_\rho) v^{L_\rho}  
 
</math>
 
</math>
1,004

edits

Navigation menu