Huygens Principle for a Planar Source

From UConn PAN
Revision as of 23:51, 3 July 2009 by Jonesrt (talk | contribs)
Jump to navigation Jump to search

We start off with Maxwell's Equation in the Lorentz gauge:


where we use the metric signature (+,+,+,-) and





The gauge condition for the Lorentz gauge is


Introduce the Green's function at from some impulse source at


and its Fourier transform

Translational symmetry implies




, where

But,





Chose the "retarded" solution, such that the function is zero unless t>t'











But the term



Now to get the in the half-space with z>0 with the boundary condition at we take the difference:



Now use Green's theorem:

Let



But

, let



Now invoke the divergence theorem on the half space :

, where the last term is zero by the condition of



To do the t integral, I need to bring out the z derivative. To do this, I first turn it into a z' derivative, using the relation:


, where





At ,

If is independent of position, as in a plane wave propagating along the z axis, then:



This gives us uniform translation of waves at velocity c. More generally:







In our case, we consider only those waves which drop off as , so:





In cylindrical coordinates, . Also, . So:



Special Case

Picture an opaque screen with a circular aperture of radius a.

Let

Then