We start off with Maxwell's Equation in the Lorentz gauge:
◻
2
A
μ
(
r
,
t
)
=
◻
2
A
μ
(
r
)
=
μ
j
μ
(
r
)
{\displaystyle \square ^{2}A^{\mu }(\mathbf {r} ,t)=\square ^{2}A^{\mu }(r)=\mu j^{\mu }(r)}
where we use the metric signature (+,+,+,-) and
A
μ
=
(
A
,
Φ
c
)
{\displaystyle A^{\mu }=(\mathbf {A} ,{\frac {\Phi }{c}})}
◻
2
=
∂
μ
∂
μ
=
∇
2
−
1
c
2
∂
2
∂
t
2
{\displaystyle \square ^{2}=\partial _{\mu }\partial ^{\mu }=\nabla ^{2}-{\frac {1}{c^{2}}}{\frac {\partial ^{2}}{\partial t^{2}}}}
j
μ
=
(
j
,
c
ρ
)
,
∂
μ
=
(
∇
,
1
c
∂
∂
t
)
{\displaystyle j^{\mu }=(\mathbf {j} ,c\rho ),\partial _{\mu }=(\mathbf {\nabla } ,{\frac {1}{c}}{\frac {\partial }{\partial t}})}
The gauge condition for the Lorentz gauge is
∂
μ
A
μ
=
0
⇒
∇
⋅
A
−
1
c
2
∂
Φ
∂
t
=
0
{\displaystyle \partial _{\mu }A^{\mu }=0\Rightarrow \mathbf {\nabla } \cdot \mathbf {A} -{\frac {1}{c^{2}}}{\frac {\partial \Phi }{\partial t}}=0}
Introduce the Green's function at
r
=
(
r
,
t
)
{\displaystyle r=(\mathbf {r} ,t)}
from some impulse source at
r
′
=
(
r
′
,
t
′
)
{\displaystyle r'=(\mathbf {r} ',t')}
◻
r
2
G
(
r
,
r
′
)
=
δ
4
(
r
−
r
′
)
{\displaystyle \square _{r}^{2}G(r,r')=\delta ^{4}(r-r')}
and its Fourier transform
G
~
(
q
)
=
1
(
2
π
)
2
∫
d
4
r
e
−
i
q
⋅
r
G
(
r
,
0
)
{\displaystyle {\tilde {G}}(q)={\frac {1}{(2\pi )^{2}}}\int d^{4}r\,e^{-iq\cdot r}G(r,0)}
G
(
r
,
0
)
=
1
(
2
π
)
2
∫
d
4
q
e
i
q
⋅
r
G
~
(
q
)
{\displaystyle G(r,0)={\frac {1}{(2\pi )^{2}}}\int d^{4}q\,e^{iq\cdot r}{\tilde {G}}(q)}
Translational symmetry implies
G
(
r
−
r
′
,
0
)
=
G
(
r
,
r
′
)
{\displaystyle G(r-r',0)=G(r,r')\quad }
so that
G
(
r
,
r
′
)
=
1
(
2
π
)
2
∫
d
4
q
e
i
q
⋅
(
r
−
r
′
)
G
~
(
q
)
{\displaystyle G(r,r')={\frac {1}{(2\pi )^{2}}}\int d^{4}q\,e^{iq\cdot (r-r')}{\tilde {G}}(q)}
◻
r
2
G
(
r
,
r
′
)
=
1
(
2
π
)
2
∫
d
4
q
(
−
q
2
)
e
i
q
⋅
(
r
−
r
′
)
G
~
(
q
)
{\displaystyle \square _{r}^{2}G(r,r')={\frac {1}{(2\pi )^{2}}}\int d^{4}q\,(-q^{2})e^{iq\cdot (r-r')}{\tilde {G}}(q)}
◻
r
2
G
(
r
,
r
′
)
=
1
(
2
π
)
2
∫
d
4
q
e
i
q
⋅
(
r
−
r
′
)
(
−
k
2
+
ω
2
c
2
)
{\displaystyle \square _{r}^{2}G(r,r')={\frac {1}{(2\pi )^{2}}}\int d^{4}q\,e^{iq\cdot (r-r')}(-k^{2}+{\frac {\omega ^{2}}{c^{2}}})}
where
q
=
(
k
,
ω
c
)
{\displaystyle q=(\mathbf {k} ,{\frac {\omega }{c}})}
. But
◻
r
2
G
(
r
,
r
′
)
=
δ
4
(
r
−
r
′
)
=
1
(
2
π
)
4
∫
d
4
q
e
i
q
⋅
(
r
−
r
′
)
{\displaystyle \square _{r}^{2}G(r,r')=\delta ^{4}(r-r')={\frac {1}{(2\pi )^{4}}}\int d^{4}q\,e^{iq\cdot (r-r')}}
G
~
(
q
)
=
(
2
π
)
2
(
2
π
)
4
1
−
q
2
=
−
1
(
2
π
)
2
q
2
{\displaystyle {\tilde {G}}(q)={\frac {(2\pi )^{2}}{(2\pi )^{4}}}{\frac {1}{-q^{2}}}={\frac {-1}{(2\pi )^{2}q^{2}}}}
G
(
r
,
r
′
)
=
−
1
(
2
π
)
4
∫
d
4
q
e
i
q
⋅
(
r
−
r
′
)
1
(
k
+
ω
c
)
(
k
−
ω
c
)
{\displaystyle G(r,r')={\frac {-1}{(2\pi )^{4}}}\int d^{4}q\,e^{iq\cdot (r-r')}{\frac {1}{(k+{\frac {\omega }{c}})(k-{\frac {\omega }{c}})}}}
Chose the "retarded" solution, such that the function is zero unless t>t'.
G
(
r
,
r
′
)
=
1
(
2
π
)
4
∫
d
3
k
e
i
k
⋅
(
r
−
r
′
)
∫
d
(
ω
c
)
e
−
i
ω
(
t
−
t
′
)
(
ω
c
−
k
)
(
ω
c
+
k
)
Θ
(
t
−
t
′
)
{\displaystyle G(r,r')={\frac {1}{(2\pi )^{4}}}\int d^{3}k\,e^{i\mathbf {k} \cdot (r-r')}\int d({\frac {\omega }{c}}){\frac {e^{-i\omega (t-t')}}{({\frac {\omega }{c}}-k)({\frac {\omega }{c}}+k)}}\Theta (t-t')}
=
1
(
2
π
)
4
∫
d
3
k
e
i
k
⋅
(
r
−
r
′
)
(
2
π
i
e
i
c
k
(
t
−
t
′
)
−
e
−
i
c
k
(
t
−
t
′
)
2
k
)
Θ
{\displaystyle ={\frac {1}{(2\pi )^{4}}}\int d^{3}k\,e^{i\mathbf {k} \cdot (r-r')}(2\pi i{\frac {e^{ick(t-t')}-e^{-ick(t-t')}}{2k}})\Theta }
=
−
2
π
(
2
π
)
4
∫
0
k
2
d
k
k
sin
(
c
k
(
t
−
t
′
)
)
2
π
∫
−
1
1
d
z
e
i
k
|
r
−
r
′
|
z
Θ
{\displaystyle ={\frac {-2\pi }{(2\pi )^{4}}}\int _{0}{\frac {k^{2}dk}{k}}\sin \left({ck(t-t')}\right)2\pi \int _{-1}^{1}dze^{ik|\mathbf {r} -\mathbf {r'} |z}\Theta }
=
−
1
(
2
π
)
2
(
1
|
r
−
r
′
|
)
2
∫
0
d
k
sin
(
c
k
(
t
−
t
′
)
)
sin
(
k
|
r
−
r
′
|
)
Θ
{\displaystyle ={\frac {-1}{(2\pi )^{2}}}\left({\frac {1}{|\mathbf {r} -\mathbf {r'|} }}\right)2\int _{0}dk\sin(ck(t-t'))\sin(k|\mathbf {r} -\mathbf {r'} |)\Theta }
=
1
(
2
π
)
2
2
|
r
−
r
′
|
2
π
4
[
δ
(
|
r
−
r
′
|
+
c
(
t
−
t
′
)
)
−
δ
(
|
r
−
r
′
|
−
c
(
t
−
t
′
)
)
]
Θ
{\displaystyle ={\frac {1}{(2\pi )^{2}}}{\frac {2}{|\mathbf {r} -\mathbf {r} '|}}{\frac {2\pi }{4}}\left[\delta (|\mathbf {r} -\mathbf {r} '|+c(t-t'))-\delta (|\mathbf {r} -\mathbf {r} '|-c(t-t'))\right]\Theta }
But the term
δ
(
|
r
−
r
′
|
+
c
(
t
−
t
′
)
)
→
0
∀
t
>
t
′
{\displaystyle \delta (|\mathbf {r} -\mathbf {r} '|+c(t-t'))\rightarrow 0\quad \forall \quad t>t'}
so that
G
(
r
,
r
′
)
=
−
1
4
π
δ
(
|
r
−
r
′
|
−
c
(
t
−
t
′
)
)
|
r
−
r
′
|
{\displaystyle G(r,r')={\frac {-1}{4\pi }}\quad {\frac {\delta (|\mathbf {r} -\mathbf {r} '|-c(t-t'))}{|\mathbf {r} -\mathbf {r} '|}}}
Now to get the
G
1
(
r
,
r
′
)
{\displaystyle G_{1}(r,r')\quad }
in the half-space with z>0 with the boundary condition
G
1
{\displaystyle G_{1}\quad }
at
r
3
=
z
=
0
{\displaystyle r_{3}=z=0\quad }
we take the difference:
G
1
(
r
,
r
′
)
=
−
1
4
π
(
δ
(
|
r
−
r
′
|
−
c
(
t
−
t
′
)
)
|
r
−
r
′
|
−
δ
(
|
r
−
r
′
+
2
z
′
e
3
^
|
−
c
(
t
−
t
′
)
)
|
r
−
r
′
+
2
z
′
e
3
^
|
)
{\displaystyle G_{1}(r,r')={\frac {-1}{4\pi }}\left({\frac {\delta (|\mathbf {r} -\mathbf {r} '|-c(t-t'))}{|\mathbf {r} -\mathbf {r} '|}}-{\frac {\delta (|\mathbf {r} -\mathbf {r} '+2z'{\hat {e_{3}}}|-c(t-t'))}{|\mathbf {r} -\mathbf {r} '+2z'{\hat {e_{3}}}|}}\right)}
Now use Green's theorem, with the generating function
F
μ
=
A
(
r
)
∂
μ
G
1
(
r
,
r
′
)
−
G
1
(
r
,
r
′
)
∂
μ
A
(
r
)
{\displaystyle F^{\mu }=A(r)\partial _{\mu }G_{1}(r,r')-G_{1}(r,r')\partial _{\mu }A(r)}
∫
∂
μ
F
μ
d
4
r
=
∫
c
d
t
∫
d
3
r
[
∂
μ
A
∂
μ
G
+
A
∂
μ
∂
μ
G
1
−
∂
μ
G
∂
μ
A
−
G
1
∂
μ
∂
μ
A
]
{\displaystyle \int \partial _{\mu }F_{\mu }d^{4}r=\int cdt\int d^{3}r[\partial _{\mu }A\partial ^{\mu }G+A\partial _{\mu }\partial ^{\mu }G_{1}-\partial _{\mu }G\partial ^{\mu }A-G_{1}\partial _{\mu }\partial ^{\mu }A]}
∂
μ
∂
μ
G
1
(
r
,
r
′
)
=
δ
4
(
r
−
r
′
)
{\displaystyle \partial _{\mu }\partial ^{\mu }G_{1}(r,r')=\delta ^{4}(r-r')}
∂
μ
∂
μ
A
(
r
)
=
μ
j
(
r
)
{\displaystyle \partial _{\mu }\partial ^{\mu }A(r)=\mu j(r)}
, let
j
(
r
)
=
0
{\displaystyle j(r)=0\quad }
∫
∂
μ
F
μ
d
4
r
=
A
(
r
′
)
{\displaystyle \int \partial _{\mu }F_{\mu }d^{4}r=A(r')}
Now invoke the divergence theorem on the half space
z
>
0
{\displaystyle z>0\quad }
:
A
(
r
′
)
=
−
∫
d
2
r
∫
c
d
t
[
A
(
r
)
∂
∂
z
G
1
(
r
,
r
′
)
−
G
1
(
r
,
r
′
)
∂
∂
z
A
(
r
)
]
{\displaystyle A(r')=-\int d^{2}r\int cdt\left[A(r){\frac {\partial }{\partial z}}G_{1}(r,r')-G_{1}(r,r'){\frac {\partial }{\partial z}}A(r)\right]}
, where the last term is zero by the condition of
G
1
(
z
=
0
,
r
′
)
=
0
{\displaystyle G_{1}(z=0,r')=0\quad }
A
(
r
′
)
=
−
c
∫
d
t
∫
d
2
r
A
(
r
)
∂
∂
z
G
1
(
r
,
r
′
)
{\displaystyle A(r')=-c\int dt\int d^{2}rA(r){\frac {\partial }{\partial z}}G_{1}(r,r')}
To do the t integral, I need to bring out the z derivative. To do this, I first turn it into a z' derivative, using the relation
G
1
(
r
,
r
′
)
=
−
1
4
π
(
δ
(
|
r
−
r
′
|
−
c
(
t
−
t
′
)
)
|
r
−
r
′
|
−
δ
(
|
r
−
r
″
|
−
c
(
t
−
t
′
)
)
|
r
−
r
″
|
)
{\displaystyle G_{1}(r,r')={\frac {-1}{4\pi }}\left({\frac {\delta (|\mathbf {r} -\mathbf {r} '|-c(t-t'))}{|\mathbf {r} -\mathbf {r} '|}}-{\frac {\delta (|\mathbf {r} -\mathbf {r} ''|-c(t-t'))}{|\mathbf {r} -\mathbf {r} ''|}}\right)}
where
r
″
=
r
′
−
2
z
′
e
3
^
{\displaystyle \mathbf {r} ''=\mathbf {r} '-2z'{\hat {e_{3}}}}
∂
∂
z
G
1
(
r
,
r
′
)
=
−
1
4
π
(
∂
∂
z
(
δ
(
|
r
−
r
′
|
−
c
(
t
−
t
′
)
)
|
r
−
r
′
|
−
δ
(
|
r
−
r
″
|
−
c
(
t
−
t
′
)
)
|
r
−
r
″
|
)
)
{\displaystyle {\frac {\partial }{\partial z}}G_{1}(r,r')={\frac {-1}{4\pi }}\left({\frac {\partial }{\partial z}}\left({\frac {\delta (|\mathbf {r} -\mathbf {r} '|-c(t-t'))}{|\mathbf {r} -\mathbf {r} '|}}-{\frac {\delta (|\mathbf {r} -\mathbf {r} ''|-c(t-t'))}{|\mathbf {r} -\mathbf {r} ''|}}\right)\right)}
∴
A
(
r
′
)
=
−
1
4
π
∂
∂
z
′
∫
z
=
0
d
2
r
(
2
A
(
r
,
t
′
−
|
r
−
r
′
|
c
)
|
r
−
r
′
|
)
{\displaystyle A(r')={\frac {-1}{4\pi }}{\frac {\partial }{\partial z'}}\int _{z=0}d^{2}r\left(2{\frac {A(\mathbf {r} ,t'-{\frac {|\mathbf {r} -\mathbf {r} '|}{c}})}{|\mathbf {r} -\mathbf {r} '|}}\right)}
At
z
=
0
{\displaystyle z=0\quad }
,
|
r
−
r
′
|
=
r
2
+
z
′
2
=
S
,
d
S
=
r
d
r
r
2
+
z
′
2
{\displaystyle |\mathbf {r} -\mathbf {r} '|={\sqrt {r^{2}+z'^{2}}}=S,dS={\frac {rdr}{\sqrt {r^{2}+z'^{2}}}}}
If
A
(
r
,
t
)
{\displaystyle A(\mathbf {r} ,t)\quad }
is independent of position, as in a plane wave propagating along the z axis, then:
A
(
r
′
)
=
−
∂
∂
z
′
∫
z
′
∞
d
S
A
(
0
,
t
−
S
c
)
=
A
(
0
,
t
′
−
z
′
c
)
{\displaystyle A(r')={\frac {-\partial }{\partial z'}}\int _{z'}^{\infty }dSA\left(\mathbf {0} ,t-{\frac {S}{c}}\right)=A\left(\mathbf {\mathbf {0} } ,t'-{\frac {z'}{c}}\right)}
This gives us uniform translation of waves at velocity c. More generally:
A
(
r
′
)
=
−
1
2
π
∫
z
=
0
d
2
r
∂
∂
z
′
(
A
(
r
,
t
′
−
|
r
−
r
′
|
c
)
|
r
−
r
′
|
)
{\displaystyle A(r')={\frac {-1}{2\pi }}\int _{z=0}d^{2}r{\frac {\partial }{\partial z'}}\left({\frac {A\left(\mathbf {r} ,t'-{\frac {|\mathbf {r} -\mathbf {r} '|}{c}}\right)}{|\mathbf {r} -\mathbf {r} '|}}\right)}
=
−
1
2
π
∫
z
=
0
d
2
r
(
A
(
r
,
t
′
−
|
r
−
r
′
|
c
)
|
r
−
r
′
|
3
(
−
z
′
)
+
A
˙
(
r
,
t
′
−
|
r
−
r
′
|
c
)
|
r
−
r
′
|
c
−
z
′
|
r
−
r
′
|
)
{\displaystyle ={\frac {-1}{2\pi }}\int _{z=0}d^{2}r\left({\frac {A\left(\mathbf {r} ,t'-{\frac {|\mathbf {r} -\mathbf {r} '|}{c}}\right)}{|\mathbf {r} -\mathbf {r} '|^{3}}}(-z')+{\frac {{\dot {A}}\left(\mathbf {r} ,t'-{\frac {|\mathbf {r} -\mathbf {r} '|}{c}}\right)}{|\mathbf {r} -\mathbf {r} '|c}}{\frac {-z'}{|\mathbf {r} -\mathbf {r} '|}}\right)}
A
(
r
′
)
=
−
1
2
π
∫
z
=
0
d
2
r
(
A
(
r
,
t
′
−
|
r
−
r
′
|
c
)
|
r
−
r
′
|
3
(
−
z
′
)
+
1
c
A
˙
(
r
,
t
′
−
|
r
−
r
′
|
c
)
|
r
−
r
′
|
2
(
−
z
′
)
)
{\displaystyle A(r')={\frac {-1}{2\pi }}\int _{z=0}d^{2}r\left({\frac {A\left(\mathbf {r} ,t'-{\frac {|\mathbf {r} -\mathbf {r} '|}{c}}\right)}{|\mathbf {r} -\mathbf {r} '|^{3}}}(-z')+{\frac {1}{c}}{\frac {{\dot {A}}\left(\mathbf {r} ,t'-{\frac {|\mathbf {r} -\mathbf {r} '|}{c}}\right)}{|\mathbf {r} -\mathbf {r} '|^{2}}}(-z')\right)}
In our case, we consider only those waves which drop off as
1
r
′
{\displaystyle {\frac {1}{r'}}\quad }
, so
A
(
r
′
)
=
z
′
2
π
c
∫
z
=
0
d
2
r
(
A
˙
(
r
,
t
′
−
|
r
−
r
′
|
c
)
|
r
−
r
′
|
2
)
{\displaystyle A(r')={\frac {z'}{2\pi c}}\int _{z=0}d^{2}r\left({\frac {{\dot {A}}\left(\mathbf {r} ,t'-{\frac {|\mathbf {r} -\mathbf {r} '|}{c}}\right)}{|\mathbf {r} -\mathbf {r} '|^{2}}}\right)}
In cylindrical coordinates,
d
2
r
=
r
d
r
d
ϕ
{\displaystyle d^{2}r=rdrd\phi \quad }
. Without loss of generality, we consider a harmonic solution with a particular frequency ω = kc.
A
˙
(
r
,
t
′
−
|
r
−
r
′
|
c
)
=
A
˙
(
r
,
0
)
e
−
i
k
(
t
′
c
−
|
r
−
r
′
|
)
{\displaystyle {\dot {A}}\left(\mathbf {r} ,t'-{\frac {|\mathbf {r} -\mathbf {r} '|}{c}}\right)={\dot {A}}(\mathbf {r} ,0)e^{-ik(t'c-|\mathbf {r} -\mathbf {r} '|)}}
A
(
r
′
)
=
i
k
z
′
2
π
e
−
i
ω
t
′
∫
z
=
0
r
d
r
d
ϕ
e
i
k
|
r
−
r
′
|
)
|
r
−
r
′
|
2
A
0
(
r
,
0
)
{\displaystyle A(r')={\frac {ikz'}{2\pi }}\,e^{-i\omega t'}\int _{z=0}rdrd\phi \,{\frac {e^{ik|\mathbf {r} -\mathbf {r} '|)}}{|\mathbf {r} -\mathbf {r} '|^{2}}}A_{0}(\mathbf {r} ,0)}
Picture an opaque screen with a circular aperture of radius a.
Let
J
(
r
′
)
=
∫
0
a
r
d
r
∫
0
2
π
d
ϕ
e
i
k
|
r
−
r
′
|
|
r
−
r
′
|
2
{\displaystyle {\mathcal {J}}(r')=\int _{0}^{a}rdr\int _{0}^{2\pi }d\phi \,{\frac {e^{ik|\mathbf {r} -\mathbf {r} '|}}{|\mathbf {r} -\mathbf {r} '|^{2}}}}
Then
A
(
r
′
)
=
z
′
A
0
˙
2
π
c
e
−
i
k
c
t
′
J
(
r
′
)
{\displaystyle A(r')={\frac {z'{\dot {A_{0}}}}{2\pi c}}e^{-ikct'}{\mathcal {J}}(r')}
But
|
r
−
r
′
|
=
(
x
−
x
′
)
2
+
(
y
−
y
′
)
2
+
z
′
2
{\displaystyle |\mathbf {r} -\mathbf {r} '|={\sqrt {(x-x')^{2}+(y-y')^{2}+z'^{2}}}}
=
r
2
+
r
′
2
+
2
r
ρ
2
cos
ϕ
{\displaystyle ={\sqrt {r^{2}+r'^{2}+2r\rho ^{2}\cos \phi }}}
=
r
′
−
2
r
ρ
′
cos
ϕ
2
r
′
,
ρ
′
r
′
=
sin
θ
′
{\displaystyle =r'-{\frac {2r\rho '\cos \phi }{2r'}},{\frac {\rho '}{r'}}=\sin {\theta }'}
so that
|
r
−
r
′
|
=
r
′
−
r
cos
ϕ
sin
θ
′
{\displaystyle |\mathbf {r} -\mathbf {r} '|=r'-r\cos {\phi }\sin {\theta }'}
and
1
|
r
−
r
′
|
2
≈
1
r
′
2
(
1
+
2
r
sin
θ
′
cos
ϕ
r
′
)
{\displaystyle {\frac {1}{|\mathbf {r} -\mathbf {r} '|^{2}}}\approx {\frac {1}{r'^{2}}}\left(1+{\frac {2r\sin \theta '\cos \phi }{r'}}\right)}
In this particular case, we are dealing with far-field effects only, so
2
r
sin
θ
′
cos
ϕ
r
′
→
0
{\displaystyle {\frac {2r\sin \theta '\cos \phi }{r'}}\rightarrow 0}
and
1
|
r
−
r
′
|
2
≈
1
r
′
2
{\displaystyle {\frac {1}{|\mathbf {r} -\mathbf {r} '|^{2}}}\approx {\frac {1}{r'^{2}}}}
So,
J
(
r
′
)
=
∫
0
a
r
d
r
∫
0
2
π
d
ϕ
e
i
k
|
r
−
r
′
|
|
r
−
r
′
|
=
e
i
k
r
′
r
′
2
∫
0
a
r
d
r
∫
0
2
π
d
ϕ
e
−
i
k
r
sin
θ
′
cos
ϕ
{\displaystyle {\mathcal {J}}(r')=\int _{0}^{a}rdr\int _{0}^{2\pi }d\phi \,{\frac {e^{ik|\mathbf {r} -\mathbf {r} '|}}{|\mathbf {r} -\mathbf {r} '|}}={\frac {e^{ikr'}}{r'^{2}}}\int _{0}^{a}rdr\int _{0}^{2\pi }d\phi \,e^{-ikr\sin {\theta }'\cos {\phi }}}
The integral
∫
0
2
π
d
ϕ
e
−
i
k
r
sin
θ
′
cos
ϕ
{\displaystyle \int _{0}^{2\pi }d\phi \,e^{-ikr\sin {\theta }'\cos {\phi }}}
is the integral representation of the zero order Bessel function of the first kind with
k
r
sin
θ
′
{\displaystyle kr\sin {\theta }'\quad }
as the argument. This gives us the equation:
J
(
r
′
)
=
e
i
k
r
′
r
′
2
∫
0
a
r
d
r
2
π
J
0
(
k
r
sin
θ
′
)
{\displaystyle {\mathcal {J}}(r')={\frac {e^{ikr'}}{r'^{2}}}\int _{0}^{a}rdr2\pi J_{0}(kr\sin {\theta }')}
To simplify the math, we make use of the fact that we can represent this Bessel functions as the derivative of a Bessel function of a different order. In general, the formula to compute this derivative is
z
v
−
k
J
v
−
k
(
z
)
=
(
1
z
∂
∂
z
)
k
z
v
J
v
(
z
)
{\displaystyle z^{v-k}J_{v-k}(z)=\left({\frac {1}{z}}{\frac {\partial }{\partial z}}\right)^{k}z^{v}J_{v}(z)}
In this case, we take
v
=
k
=
1
{\displaystyle v=k=1\quad }
and
z
=
k
r
sin
θ
′
{\displaystyle z=kr\sin {\theta }'\quad }
. So
J
0
(
k
r
sin
θ
′
)
=
(
1
k
r
sin
θ
′
∂
∂
(
k
r
sin
θ
′
)
)
(
k
r
sin
θ
′
)
J
1
(
k
r
sin
θ
′
)
{\displaystyle J_{0}(kr\sin {\theta }')=\left({\frac {1}{kr\sin {\theta }'}}{\frac {\partial }{\partial (kr\sin {\theta }')}}\right)(kr\sin {\theta }')J_{1}(kr\sin {\theta }')}
This gives us the equation
J
(
r
′
)
=
2
π
e
i
k
r
′
r
′
2
∫
0
a
r
d
r
(
1
k
r
sin
θ
′
∂
∂
(
k
r
sin
θ
′
)
)
(
k
r
sin
θ
′
)
J
1
(
k
r
sin
θ
′
)
{\displaystyle {\mathcal {J}}(r')=2\pi {\frac {e^{ikr'}}{r'^{2}}}\int _{0}^{a}rdr\left({\frac {1}{kr\sin {\theta }'}}{\frac {\partial }{\partial (kr\sin {\theta }')}}\right)(kr\sin {\theta }')J_{1}(kr\sin {\theta }')}
Let
x
=
k
r
sin
θ
′
{\displaystyle x=kr\sin {\theta '}\quad }
so that
J
(
r
′
)
=
2
π
e
i
k
r
′
k
2
sin
2
θ
′
r
′
2
∫
0
k
a
sin
θ
′
d
x
d
d
x
x
J
1
(
x
)
{\displaystyle {\mathcal {J}}(r')=2\pi {\frac {e^{ikr'}}{k^{2}\sin ^{2}{\theta }'r'^{2}}}\int _{0}^{ka\sin {\theta '}}dx{\frac {d}{dx}}xJ_{1}(x)}
J
(
r
′
)
=
2
π
e
i
k
r
′
k
sin
θ
′
r
′
2
[
a
J
1
(
k
a
sin
θ
′
)
−
0
J
1
(
0
k
sin
θ
′
)
]
=
2
π
e
i
k
r
′
k
sin
θ
′
r
′
2
a
J
1
(
k
a
sin
θ
′
)
{\displaystyle {\mathcal {J}}(r')=2\pi {\frac {e^{ikr'}}{k\sin {\theta }'r'^{2}}}\left[aJ_{1}(ka\sin {\theta }')-0J_{1}(0k\sin {\theta }')\right]=2\pi {\frac {e^{ikr'}}{k\sin {\theta }'r'^{2}}}aJ_{1}(ka\sin {\theta }')}
and
A
(
r
′
)
=
z
′
A
0
˙
2
π
c
e
−
i
ω
t
′
2
π
e
i
k
r
′
k
sin
θ
′
r
′
2
a
J
1
(
k
a
sin
θ
′
)
=
z
′
A
0
˙
a
c
e
i
k
r
′
−
i
ω
t
′
k
sin
θ
′
r
′
2
J
1
(
k
a
sin
θ
′
)
{\displaystyle A(r')={\frac {z'{\dot {A_{0}}}}{2\pi c}}e^{-i\omega t'}2\pi {\frac {e^{ikr'}}{k\sin {\theta }'r'^{2}}}aJ_{1}(ka\sin {\theta }')={\frac {z'{\dot {A_{0}}}a}{c}}{\frac {e^{ikr'-i\omega t'}}{k\sin {\theta }'r'^{2}}}J_{1}(ka\sin {\theta }')}
To find the angle to the diffraction minimum, we must find the zeroes of this amplitude function. This will occur when
J
1
(
k
a
sin
θ
′
)
=
0
{\displaystyle J_{1}(ka\sin {\theta }')=0\quad }
Plot of Bessel function of the first kind, J
α (x), for integer orders α=0,1,2.
To the right is a graph of three Bessel functions of the first order, specifically
J
0
(
x
)
,
J
1
(
x
)
,
a
n
d
J
2
(
x
)
{\displaystyle J_{0}(x),J_{1}(x),andJ_{2}(x)\quad }
. As it is shown, the first zero of
J
1
(
x
)
{\displaystyle J_{1}(x)\quad }
will
occur at
x
=
0
{\displaystyle x=0\quad }
. This will correspond to the center of the pattern, at
θ
=
0
{\displaystyle \theta =0\quad }
. Here, we would expect a bright spot, so
A
(
r
′
)
{\displaystyle A(r')\quad }
should be positive and finite. At
θ
=
0
{\displaystyle \theta =0\quad }
the term
J
1
(
k
a
sin
θ
′
)
sin
θ
′
{\displaystyle {\frac {J_{1}(ka\sin {\theta }')}{\sin {\theta }'}}}
is positive and finite, so this expression gives the correct amplitude at
θ
=
0
{\displaystyle \theta =0\quad }
. The next zero of
J
1
(
x
)
{\displaystyle J_{1}(x)\quad }
corresponds to the first minumum of the diffraction pattern. In this case, this zero occurs at x=3.832. So,
k
a
sin
θ
′
=
3.832
{\displaystyle ka\sin {\theta }'=3.832\quad }
. Since
k
=
2
π
λ
{\displaystyle k={\frac {2\pi }{\lambda }}\quad }
and
a
=
D
2
{\displaystyle a={\frac {D}{2}}\quad }
2
π
D
sin
θ
′
2
λ
=
3.832
→
sin
θ
′
=
1.22
λ
D
{\displaystyle {\frac {2\pi D\sin {\theta }'}{2\lambda }}=3.832\rightarrow \sin {\theta }'={\frac {1.22\lambda }{D}}}