Huygens Principle for a Planar Source

From UConn PAN
Revision as of 01:24, 4 July 2009 by Jonesrt (talk | contribs)
Jump to navigation Jump to search

We start off with Maxwell's Equation in the Lorentz gauge:


where we use the metric signature (+,+,+,-) and





The gauge condition for the Lorentz gauge is


Introduce the Green's function at from some impulse source at


and its Fourier transform


Translational symmetry implies

so that



where . But




Chose the "retarded" solution, such that the function is zero unless t>t'.











But the term so that


Now to get the in the half-space with z>0 with the boundary condition at   we take the difference:



Now use Green's theorem, with the generating function







, let



Now invoke the divergence theorem on the half space :

, where the last term is zero by the condition of



To do the t integral, I need to bring out the z derivative. To do this, I first turn it into a z' derivative, using the relation

where





At ,

If is independent of position, as in a plane wave propagating along the z axis, then:



This gives us uniform translation of waves at velocity c. More generally:







In our case, we consider only those waves which drop off as , so


In cylindrical coordinates, . Without loss of generality, we consider a harmonic solution with a particular frequency ω = kc.



Special Case

Picture an opaque screen with a circular aperture of radius a.

Let

Then

But




so that