Difference between revisions of "Huygens Principle for a Planar Source"

From UConn PAN
Jump to navigation Jump to search
Line 85: Line 85:
  
 
To the right is a graph of three Bessel functions of the first order, specifically <math> J_0(x), J_1(x), and J_2(x) \quad</math>.  It it is shown, the first zero of <math>J_1(x) \quad</math> will <br>
 
To the right is a graph of three Bessel functions of the first order, specifically <math> J_0(x), J_1(x), and J_2(x) \quad</math>.  It it is shown, the first zero of <math>J_1(x) \quad</math> will <br>
occur at <math>x=0 \quad</math>.  This will correspond to the center of the pattern, at <math>\theta=0 \quad</math>.  Here, we would expect a bright spot, so <math>A(r') \quad</math> sould be positive and finite.  At <math>\theta=0 \quad</math> the term <math>\frac{J_1(ka\sin{\theta}')}{\sin{\theta}'}</math> is positive and finite, so this expression gives the correct tamplitude at <math>\theta=0 \quad</math>.  The next zero of <math> J_1(x) \quad</math> corresponds to the first minumum of the diffraction pattern.   
+
occur at <math>x=0 \quad</math>.  This will correspond to the center of the pattern, at <math>\theta=0 \quad</math>.  Here, we would expect a bright spot, so <math>A(r') \quad</math> sould be positive and finite.  At <math>\theta=0 \quad</math> the term <math>\frac{J_1(ka\sin{\theta}')}{\sin{\theta}'}</math> is positive and finite, so this expression gives the correct tamplitude at <math>\theta=0 \quad</math>.  The next zero of <math> J_1(x) \quad</math> corresponds to the first minumum of the diffraction pattern.  In this case, this zero occurs at x=3.832.  So, <math>ka\sin{\theta}'=3.832 \quad</math> . Since<math> k=\frac{2\pi}{\lambda}\quad</math> and <math> a=\frac{D}{2}\quad</math><br><br>
[[Image:Airy-pattern.svg|thumb|300px|right|Image of the Airy disk created at the lens surface]]
+
 
 +
<math>\frac{2\pi D\sin{\theta}'}{2\lambda}=3.832\rightarrow \sin{\theta}'= \frac{1.22\lambda}{D}</math>

Revision as of 16:33, 9 July 2009

We start off with Maxwell's Equation in the Lorentz gauge:

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \square^2A^\mu(\mathbf{r},t) = \square^2A^\mu (r)=\mu j^\mu (r)}

where we use the metric signature (+,+,+,-) and

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle A^\mu = (\mathbf{A},\frac{\Phi} {c})}
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \square^2=\part_\mu \part^\mu = \nabla^2 - \frac{1}{c^2} \frac{\part^2}{\part t^2}}

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle j^\mu = (\mathbf{j},c\rho), \part_\mu= (\mathbf{\nabla}, \frac{1}{c} \frac{\part}{\part t})}

The gauge condition for the Lorentz gauge is


Introduce the Green's function at Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r=(\mathbf{r},t)} from some impulse source at Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r'=(\mathbf{r}',t')}

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \square^2_rG(r,r')=\delta^4(r-r')}

and its Fourier transform

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \tilde{G} (q) = \frac{1}{(2\pi)^2} \int d^4r\, e^{-iq\cdot r} G(r,0)}
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle G(r,0)=\frac{1}{(2\pi)^2} \int d^4q\, e^{iq\cdot r} \tilde{G}(q)}

Translational symmetry implies

so that


Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \square^2_rG(r,r')=\frac{1}{(2\pi)^2}\int d^4q\,(-q^2)e^{iq\cdot (r-r')}\tilde{G}(q)}
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \square^2_rG(r,r')=\frac{1}{(2\pi)^2}\int d^4q\, e^{iq\cdot (r-r')}(-k^2+\frac{\omega^2}{c^2})}

where Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q=(\mathbf{k},\frac{\omega}{c})} . But

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \square^2_rG(r,r')=\delta^4(r-r')=\frac{1}{(2\pi)^4}\int d^4q\, e^{iq\cdot (r-r')}}

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle G(r,r')=\frac{-1}{(2\pi)^4} \int d^4q\, e^{iq\cdot (r-r')} \frac{1}{(k+\frac{\omega}{c})(k-\frac{\omega}{c})}}

Chose the "retarded" solution, such that the function is zero unless t>t'.

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle G(r,r')=\frac{1}{(2\pi)^4}\int d^3k\, e^{i\mathbf{k}\cdot (r-r')}\int d(\frac{\omega}{c}) \frac{e^{-i\omega(t-t')}}{(\frac{\omega}{c}-k)(\frac{\omega}{c}+k)}\Theta(t-t')}

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle =\frac{1}{(2\pi)^4}\int d^3k\, e^{i\mathbf{k}\cdot (r-r')}(2\pi i \frac{e^{ick(t-t')}-e^{-ick(t-t')}}{2k})\Theta}







But the term so that


Now to get the in the half-space with z>0 with the boundary condition at   we take the difference:



Now use Green's theorem, with the generating function







, let



Now invoke the divergence theorem on the half space :

, where the last term is zero by the condition of



To do the t integral, I need to bring out the z derivative. To do this, I first turn it into a z' derivative, using the relation

where





At ,

If is independent of position, as in a plane wave propagating along the z axis, then:



This gives us uniform translation of waves at velocity c. More generally:





Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle A(r')=\frac{-1}{2\pi}\int_{z=0} d^2r\left(\frac{A\left(\mathbf{r},t'-\frac{|\mathbf{r}-\mathbf{r}'|}{c}\right)}{|\mathbf{r}-\mathbf{r}'|^3}(-z')+\frac{1}{c}\frac{\dot{A}\left(\mathbf{r},t'-\frac{|\mathbf{r}-\mathbf{r}'|}{c}\right)}{|\mathbf{r}-\mathbf{r}'|^2}(-z')\right)}

In our case, we consider only those waves which drop off as , so

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle A(r')=\frac{z'}{2\pi c}\int_{z=0} d^2r\left(\frac{\dot{A}\left(\mathbf{r},t'-\frac{|\mathbf{r}-\mathbf{r}'|}{c}\right)}{|\mathbf{r}-\mathbf{r}'|^2}\right)}

In cylindrical coordinates, Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle d^2r=rdrd\phi \quad} . Without loss of generality, we consider a harmonic solution with a particular frequency ω = kc.

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \dot{A}\left(\mathbf{r},t'-\frac{|\mathbf{r}-\mathbf{r}'|}{c}\right)=\dot{A}(\mathbf{r},0)e^{-ik(t'c-|\mathbf{r}-\mathbf{r}'|)}}

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle A(r')=\frac{ikz'}{2\pi}\,e^{-i\omega t'} \int_{z=0} rdrd\phi\, \frac{e^{ik|\mathbf{r}-\mathbf{r}'|)}}{|\mathbf{r}-\mathbf{r}'|^2}A_0(\mathbf{r},0)}

Special Case

Picture an opaque screen with a circular aperture of radius a.

LetFailed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathcal{J}(r')=\int_0^a rdr\int_0^{2\pi} d\phi\, \frac{e^{ik|\mathbf{r}-\mathbf{r}'|}}{|\mathbf{r}-\mathbf{r}'|^2}}

Then Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle A(r')=\frac{z'\dot{A_0}}{2\pi c}e^{-ikct'}\mathcal{J}(r')}

But Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle |\mathbf{r}-\mathbf{r}'|=\sqrt{(x-x')^2+(y-y')^2+z'^2}}

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle =\sqrt{r^2+r'^2+2r\rho^2\cos\phi}}
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle =r'-\frac{2r\rho'\cos\phi}{2r'}, \frac{\rho'}{r'}=\sin{\theta}'}

so that Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle |\mathbf{r}-\mathbf{r}'|=r'-r\cos{\phi}\sin{\theta}'} and Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{1}{|\mathbf{r}-\mathbf{r}'|^2} \approx \frac{1}{r'^2}\left(1+\frac{2r\sin\theta'\cos\phi}{r'}\right)}

In this particular case, we are dealing with far-field effects only, so Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{2r\sin\theta'\cos\phi}{r'}\rightarrow 0 } and Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{1}{|\mathbf{r}-\mathbf{r}'|^2} \approx \frac{1}{r'^2}}

So, Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathcal{J}(r')=\int_0^a rdr\int_0^{2\pi} d\phi\, \frac{e^{ik|\mathbf{r}-\mathbf{r}'|}}{|\mathbf{r}-\mathbf{r}'|}=\frac{e^{ikr'}}{r'^2}\int_0^a rdr\int_0^{2\pi} d\phi\, e^{-ikr\sin{\theta}'\cos{\phi}}}

The integral Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \int_0^{2\pi} d\phi\, e^{-ikr\sin{\theta}'\cos{\phi}}} is the integral representation of the zero order Bessel function of the first kind with Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle kr\sin{\theta}' \quad} as the argument. This gives us the equation:

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathcal{J}(r')=\frac{e^{ikr'}}{r'^2}\int_0^a rdr 2\pi J_0(kr \sin{\theta}') }

To simplify the math, we make use of the fact that we can represent this Bessel functions as the derivative of a Bessel function of a different order. In general, the formula to compute this derivative is

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle z^{v-k}J_{v-k}(z)=\left(\frac{1}{z}\frac{\part}{\part z}\right)^kz^vJ_v(z)}

In this case, we take Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle v=k=1 \quad} and Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle z=kr\sin{\theta}' \quad} . So

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle J_0(kr\sin{\theta}')=\left(\frac{1}{kr\sin{\theta}'}\frac{\part}{\part (kr\sin{\theta}')}\right)(kr\sin{\theta}')J_1(kr\sin{\theta}')=\frac{d}{k\sin{\theta}'dr} J_1(kr\sin{\theta}')}

This gives us the equationFailed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathcal{J}(r')=2\pi\frac{e^{ikr'}}{r'^2}\int_0^a rdr \frac{d}{k\sin{\theta}'dr} J_1(kr\sin{\theta}')}

We invoke the principle that the integral of a derivative is the function evaluated at the end points to give us the equation

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathcal{J}(r')=2\pi\frac{e^{ikr'}}{k\sin{\theta}'r'^2}\left[aJ_1(ka\sin{\theta}')-0J_1(0k\sin{\theta}')\right]=2\pi\frac{e^{ikr'}}{k\sin{\theta}'r'^2}aJ_1(ka\sin{\theta}')}

and Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle A(r')=\frac{z'\dot{A_0}}{2\pi c}e^{-ikct'} 2\pi\frac{e^{ikr'}}{k\sin{\theta}'r'^2}aJ_1(ka\sin{\theta}')=\frac{z'\dot{A_0}a}{c}\frac{e^{ikr'-ikct'}}{k\sin{\theta}'r'^2}J_1(ka\sin{\theta}')}

To find the angle to the first diffraction minimum, we must find the first zero of this amplitude function. This will occur when Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle J_1(ka\sin{\theta}')=0 \quad}

Plot of Bessel function of the first kind, Jα(x), for integer orders α=0,1,2.

To the right is a graph of three Bessel functions of the first order, specifically Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle J_0(x), J_1(x), and J_2(x) \quad} . It it is shown, the first zero of Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle J_1(x) \quad} will
occur at Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x=0 \quad} . This will correspond to the center of the pattern, at Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \theta=0 \quad} . Here, we would expect a bright spot, so Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle A(r') \quad} sould be positive and finite. At Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \theta=0 \quad} the term Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{J_1(ka\sin{\theta}')}{\sin{\theta}'}} is positive and finite, so this expression gives the correct tamplitude at Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \theta=0 \quad} . The next zero of Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle J_1(x) \quad} corresponds to the first minumum of the diffraction pattern. In this case, this zero occurs at x=3.832. So, Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle ka\sin{\theta}'=3.832 \quad} . SinceFailed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle k=\frac{2\pi}{\lambda}\quad} and Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle a=\frac{D}{2}\quad}

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{2\pi D\sin{\theta}'}{2\lambda}=3.832\rightarrow \sin{\theta}'= \frac{1.22\lambda}{D}}