|
|
| Line 4: |
Line 4: |
| | :<math>A^\mu = (\mathbf{A},\frac{\Phi} {c})</math> | | :<math>A^\mu = (\mathbf{A},\frac{\Phi} {c})</math> |
| | :<math>\square^2=\part_\mu \part^\mu = \nabla^2 - \frac{1}{c^2} \frac{\part^2}{\part t^2}</math><br><br> | | :<math>\square^2=\part_\mu \part^\mu = \nabla^2 - \frac{1}{c^2} \frac{\part^2}{\part t^2}</math><br><br> |
| − | :<math>j^\mu = (\mathbf{j},c\rho), \part_\mu= (\mathbf{\nabla}, \frac{1}{c} \frac{\part}{\part t})</math><br> | + | :<math>j^\mu = (\mathbf{j},c\rho), \part_\mu= (\mathbf{\nabla}, \frac{1}{c} \frac{\part}{\part t})</math><br><br> |
| | The gauge condition for the Lorentz gauge is | | The gauge condition for the Lorentz gauge is |
| | :<math>\part_\mu A^\mu = 0 \rArr \mathbf{\nabla} \cdot \mathbf{A}-\frac{1}{c^2} \frac{\part\Phi}{\part t}=0</math><br> | | :<math>\part_\mu A^\mu = 0 \rArr \mathbf{\nabla} \cdot \mathbf{A}-\frac{1}{c^2} \frac{\part\Phi}{\part t}=0</math><br> |
| | Introduce the Green's function at <math> r=(\mathbf{r},t)</math> from some impulse source at <math> r'=(\mathbf{r}',t')</math> | | Introduce the Green's function at <math> r=(\mathbf{r},t)</math> from some impulse source at <math> r'=(\mathbf{r}',t')</math> |
| − | :<math>\square^2_rG(r,r')=\delta^4(r-r')</math><br><br> | + | :<math>\square^2_rG(r,r')=\delta^4(r-r')</math><br> |
| | and its Fourier transform | | and its Fourier transform |
| | :<math> \tilde{G} (q) = \frac{1}{(2\pi)^2} \int d^4r e^{-iq\cdot r} G(r,0)</math> | | :<math> \tilde{G} (q) = \frac{1}{(2\pi)^2} \int d^4r e^{-iq\cdot r} G(r,0)</math> |
| − | :G(r,0)=\frac{1}{(2\pi)^2} \int d^4qe^{iq\cdot r} \tilde{G}(q)</math> | + | :<math> G(r,0)=\frac{1}{(2\pi)^2} \int d^4qe^{iq\cdot r} \tilde{G}(q)</math> |
| − | Translational symmetry implies<br><br> | + | Translational symmetry implies |
| | :<math>G(r-r',0)=G(r,r') \quad </math> | | :<math>G(r-r',0)=G(r,r') \quad </math> |
| | | | |
We start off with Maxwell's Equation in the Lorentz gauge:

where we use the metric signature (+,+,+,-) and



The gauge condition for the Lorentz gauge is

Introduce the Green's function at
from some impulse source at

and its Fourier transform


Translational symmetry implies

∴

, where 
But, 
∴

Chose the "retarded" solution, such that the function is zero unless t>t'




![{\displaystyle ={\frac {1}{(2\pi )^{2}}}{\frac {2}{|\mathbf {r} -\mathbf {r} '|}}{\frac {2\pi }{4}}\left[\delta (|\mathbf {r} -\mathbf {r} '|+c(t-t'))-\delta (|\mathbf {r} -\mathbf {r} '|-c(t-t'))\right]\Theta }](https://wikimedia.org/api/rest_v1/media/math/render/svg/48541628af99cf28e2d003864682e6565eaa5915)
But the term 
∴
Now to get the
in the half-space with z>0 with the boundary condition
at
we take the difference:

Now use Green's theorem:
Let 
![{\displaystyle \int \partial _{\mu }F_{\mu }d^{4}r=\int cdt\int d^{3}r[\partial _{\mu }A\partial ^{\mu }G+A\partial _{\mu }\partial ^{\mu }G_{1}-\partial _{\mu }G\partial ^{\mu }A-G_{1}\partial _{\mu }\partial ^{\mu }A]}](https://wikimedia.org/api/rest_v1/media/math/render/svg/c807a3acf6af188a25a7f51900bfbaecacfcd486)
But 
, let 

Now invoke the divergence theorem on the half space
:
, where the last term is zero by the condition of

To do the t integral, I need to bring out the z derivative. To do this, I first turn it into a z' derivative, using the relation:
, where 

∴ 
At
, 
If
is independent of position, as in a plane wave propagating along the z axis, then:

This gives us uniform translation of waves at velocity c. More generally:



In our case, we consider only those waves which drop off as
, so:


In cylindrical coordinates,
. Also,
. So:

Special Case
Picture an opaque screen with a circular aperture of radius a.
Let
Then 

