Difference between revisions of "Huygens Principle for a Planar Source"

From UConn PAN
Jump to navigation Jump to search
Line 4: Line 4:
 
:<math>A^\mu = (\mathbf{A},\frac{\Phi} {c})</math>
 
:<math>A^\mu = (\mathbf{A},\frac{\Phi} {c})</math>
 
:<math>\square^2=\part_\mu \part^\mu = \nabla^2 - \frac{1}{c^2} \frac{\part^2}{\part t^2}</math><br><br>
 
:<math>\square^2=\part_\mu \part^\mu = \nabla^2 - \frac{1}{c^2} \frac{\part^2}{\part t^2}</math><br><br>
:<math>j^\mu = (\mathbf{j},c\rho), \part_\mu= (\mathbf{\nabla}, \frac{1}{c} \frac{\part}{\part t})</math><br>
+
:<math>j^\mu = (\mathbf{j},c\rho), \part_\mu= (\mathbf{\nabla}, \frac{1}{c} \frac{\part}{\part t})</math><br><br>
 
The gauge condition for the Lorentz gauge is
 
The gauge condition for the Lorentz gauge is
 
:<math>\part_\mu A^\mu = 0 \rArr \mathbf{\nabla} \cdot \mathbf{A}-\frac{1}{c^2} \frac{\part\Phi}{\part t}=0</math><br>
 
:<math>\part_\mu A^\mu = 0 \rArr \mathbf{\nabla} \cdot \mathbf{A}-\frac{1}{c^2} \frac{\part\Phi}{\part t}=0</math><br>
 
Introduce the Green's function at <math> r=(\mathbf{r},t)</math> from some impulse source at <math> r'=(\mathbf{r}',t')</math>
 
Introduce the Green's function at <math> r=(\mathbf{r},t)</math> from some impulse source at <math> r'=(\mathbf{r}',t')</math>
:<math>\square^2_rG(r,r')=\delta^4(r-r')</math><br><br>
+
:<math>\square^2_rG(r,r')=\delta^4(r-r')</math><br>
 
and its Fourier transform
 
and its Fourier transform
 
:<math> \tilde{G} (q) = \frac{1}{(2\pi)^2} \int d^4r e^{-iq\cdot r} G(r,0)</math>
 
:<math> \tilde{G} (q) = \frac{1}{(2\pi)^2} \int d^4r e^{-iq\cdot r} G(r,0)</math>
:G(r,0)=\frac{1}{(2\pi)^2} \int d^4qe^{iq\cdot r} \tilde{G}(q)</math>
+
:<math> G(r,0)=\frac{1}{(2\pi)^2} \int d^4qe^{iq\cdot r} \tilde{G}(q)</math>
Translational symmetry implies<br><br>
+
Translational symmetry implies
 
:<math>G(r-r',0)=G(r,r') \quad </math>
 
:<math>G(r-r',0)=G(r,r') \quad </math>
  

Revision as of 23:51, 3 July 2009

We start off with Maxwell's Equation in the Lorentz gauge:


where we use the metric signature (+,+,+,-) and





The gauge condition for the Lorentz gauge is


Introduce the Green's function at from some impulse source at


and its Fourier transform

Translational symmetry implies




, where

But,





Chose the "retarded" solution, such that the function is zero unless t>t'











But the term



Now to get the in the half-space with z>0 with the boundary condition at we take the difference:



Now use Green's theorem:

Let



But

, let



Now invoke the divergence theorem on the half space :

, where the last term is zero by the condition of



To do the t integral, I need to bring out the z derivative. To do this, I first turn it into a z' derivative, using the relation:


, where





At ,

If is independent of position, as in a plane wave propagating along the z axis, then:



This gives us uniform translation of waves at velocity c. More generally:







In our case, we consider only those waves which drop off as , so:





In cylindrical coordinates, . Also, . So:



Special Case

Picture an opaque screen with a circular aperture of radius a.

Let

Then