Difference between revisions of "Huygens Principle for a Planar Source"
| Line 81: | Line 81: | ||
This gives us the equation<math>\mathcal{J}(r')=2\pi\frac{e^{ikr'}}{r'^2}\int_0^a rdr \frac{d}{k\sin{\theta}'dr} J_1(kr\sin{\theta}')</math><br><br> | This gives us the equation<math>\mathcal{J}(r')=2\pi\frac{e^{ikr'}}{r'^2}\int_0^a rdr \frac{d}{k\sin{\theta}'dr} J_1(kr\sin{\theta}')</math><br><br> | ||
We invoke the principle that the integral of a derivative is the function evaluated at the end points to give us the equation<br><br><math>\mathcal{J}(r')=2\pi\frac{e^{ikr'}}{k\sin{\theta}'r'^2}\left[aJ_1(ka\sin{\theta}')-0J_1(0k\sin{\theta}')\right]=2\pi\frac{e^{ikr'}}{k\sin{\theta}'r'^2}aJ_1(ka\sin{\theta}')</math><br><br> and <math>A(r')=\frac{z'\dot{A_0}}{2\pi c}e^{-ikct'} 2\pi\frac{e^{ikr'}}{k\sin{\theta}'r'^2}aJ_1(ka\sin{\theta}')=\frac{z'\dot{A_0}a}{c}\frac{e^{ikr'-ikct'}}{k\sin{\theta}'r'^2}J_1(ka\sin{\theta}')</math><br><br> | We invoke the principle that the integral of a derivative is the function evaluated at the end points to give us the equation<br><br><math>\mathcal{J}(r')=2\pi\frac{e^{ikr'}}{k\sin{\theta}'r'^2}\left[aJ_1(ka\sin{\theta}')-0J_1(0k\sin{\theta}')\right]=2\pi\frac{e^{ikr'}}{k\sin{\theta}'r'^2}aJ_1(ka\sin{\theta}')</math><br><br> and <math>A(r')=\frac{z'\dot{A_0}}{2\pi c}e^{-ikct'} 2\pi\frac{e^{ikr'}}{k\sin{\theta}'r'^2}aJ_1(ka\sin{\theta}')=\frac{z'\dot{A_0}a}{c}\frac{e^{ikr'-ikct'}}{k\sin{\theta}'r'^2}J_1(ka\sin{\theta}')</math><br><br> | ||
| − | To find the angle to the | + | To find the angle to the diffraction minimum, we must find the zeroes of this amplitude function. This will occur when <math>J_1(ka\sin{\theta}')=0 \quad</math><br><br> |
[[Image:Bessels_J0.svg|thumb|300px|right|Plot of Bessel function of the first kind, J<sub>α</sub>(x), for integer orders α=0,1,2.]] | [[Image:Bessels_J0.svg|thumb|300px|right|Plot of Bessel function of the first kind, J<sub>α</sub>(x), for integer orders α=0,1,2.]] | ||
Revision as of 20:03, 9 July 2009
We start off with Maxwell's Equation in the Lorentz gauge:
where we use the metric signature (+,+,+,-) and
The gauge condition for the Lorentz gauge is
Introduce the Green's function at from some impulse source at
and its Fourier transform
- Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle G(r,0)=\frac{1}{(2\pi)^2} \int d^4q\, e^{iq\cdot r} \tilde{G}(q)}
Translational symmetry implies
- Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle G(r-r',0)=G(r,r')\quad}
so that
- Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle G(r,r')=\frac{1}{(2\pi)^2}\int d^4q\, e^{iq\cdot (r-r')} \tilde{G} (q)}
- Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \square^2_rG(r,r')=\frac{1}{(2\pi)^2}\int d^4q\,(-q^2)e^{iq\cdot (r-r')}\tilde{G}(q)}
- Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \square^2_rG(r,r')=\frac{1}{(2\pi)^2}\int d^4q\, e^{iq\cdot (r-r')}(-k^2+\frac{\omega^2}{c^2})}
where Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q=(\mathbf{k},\frac{\omega}{c})} . But
- Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \square^2_rG(r,r')=\delta^4(r-r')=\frac{1}{(2\pi)^4}\int d^4q\, e^{iq\cdot (r-r')}}
- Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle G(r,r')=\frac{-1}{(2\pi)^4} \int d^4q\, e^{iq\cdot (r-r')} \frac{1}{(k+\frac{\omega}{c})(k-\frac{\omega}{c})}}
Chose the "retarded" solution, such that the function is zero unless t>t'.
- Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle G(r,r')=\frac{1}{(2\pi)^4}\int d^3k\, e^{i\mathbf{k}\cdot (r-r')}\int d(\frac{\omega}{c}) \frac{e^{-i\omega(t-t')}}{(\frac{\omega}{c}-k)(\frac{\omega}{c}+k)}\Theta(t-t')}
- Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle =\frac{1}{(2\pi)^4}\int d^3k\, e^{i\mathbf{k}\cdot (r-r')}(2\pi i \frac{e^{ick(t-t')}-e^{-ick(t-t')}}{2k})\Theta}
- Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle =\frac{-2\pi}{(2\pi)^4}\int_0 \frac{k^2dk}{k} \sin\left({ck(t-t')}\right) 2\pi\int_{-1}^1 dze^{ik|\mathbf{r}-\mathbf{r'}|z}\Theta}
- Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle =\frac{-1}{(2\pi)^2}\left(\frac{1}{|\mathbf{r}-\mathbf{r'|}}\right)2\int_0 dk \sin(ck(t-t')) \sin(k|\mathbf{r}-\mathbf{r'}|)\Theta}
- Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle =\frac{1}{(2\pi)^2}\frac{2}{|\mathbf{r}-\mathbf{r}'|}\frac{2\pi}{4} \left[\delta(|\mathbf{r}-\mathbf{r}'|+c(t-t'))-\delta(|\mathbf{r}-\mathbf{r}'|-c(t-t'))\right]\Theta}
- Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle =\frac{1}{(2\pi)^4}\int d^3k\, e^{i\mathbf{k}\cdot (r-r')}(2\pi i \frac{e^{ick(t-t')}-e^{-ick(t-t')}}{2k})\Theta}
But the term Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \delta(|\mathbf{r}-\mathbf{r}'|+c(t-t'))\rightarrow 0 \quad\forall\quad t>t'}
so that
- Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle G(r,r')=\frac{-1}{4\pi}\quad \frac{\delta(|\mathbf{r}-\mathbf{r}'|-c(t-t'))}{|\mathbf{r}-\mathbf{r}'|}}
Now to get the Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle G_1(r,r')\quad }
in the half-space with z>0 with the boundary condition atFailed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r_3=z=0 \quad}
we take the difference:
- Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle G_1(r,r')=\frac{-1}{4\pi}\left(\frac{\delta(|\mathbf{r}-\mathbf{r}'|-c(t-t'))}{|\mathbf{r}-\mathbf{r}'|}-\frac{\delta(|\mathbf{r}-\mathbf{r}'+2z'\hat{e_3}|-c(t-t'))}{|\mathbf{r}-\mathbf{r}'+2z'\hat{e_3}|}\right)}
Now use Green's theorem, with the generating function
- Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle F^\mu=A(r)\part_\mu G_1(r,r')-G_1(r,r')\part_\mu A(r)}
- , let
Now invoke the divergence theorem on the half space :
- , where the last term is zero by the condition of
To do the t integral, I need to bring out the z derivative. To do this, I first turn it into a z' derivative, using the relation
where
∴
At ,
If is independent of position, as in a plane wave propagating along the z axis, then:
This gives us uniform translation of waves at velocity c. More generally:
In our case, we consider only those waves which drop off as , so
In cylindrical coordinates, . Without loss of generality, we consider a harmonic solution with a particular frequency ω = kc.
Special Case
Picture an opaque screen with a circular aperture of radius a.
Let
Then
But
so that and
In this particular case, we are dealing with far-field effects only, so and
So,
The integral is the integral representation of the zero order Bessel function of the first kind with as the argument. This gives us the equation:
To simplify the math, we make use of the fact that we can represent this Bessel functions as the derivative of a Bessel function of a different order. In general, the formula to compute this derivative is
In this case, we take and . So
This gives us the equation
We invoke the principle that the integral of a derivative is the function evaluated at the end points to give us the equation
and
To find the angle to the diffraction minimum, we must find the zeroes of this amplitude function. This will occur when
To the right is a graph of three Bessel functions of the first order, specifically . It it is shown, the first zero of will
occur at . This will correspond to the center of the pattern, at . Here, we would expect a bright spot, so sould be positive and finite. At the term is positive and finite, so this expression gives the correct tamplitude at Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \theta=0 \quad}
. The next zero of Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle J_1(x) \quad}
corresponds to the first minumum of the diffraction pattern. In this case, this zero occurs at x=3.832. So, Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle ka\sin{\theta}'=3.832 \quad}
. SinceFailed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle k=\frac{2\pi}{\lambda}\quad}
and Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle a=\frac{D}{2}\quad}
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{2\pi D\sin{\theta}'}{2\lambda}=3.832\rightarrow \sin{\theta}'= \frac{1.22\lambda}{D}}