Difference between revisions of "Huygens Principle for a Planar Source"

From UConn PAN
Jump to navigation Jump to search
Line 66: Line 66:
 
== Special Case ==
 
== Special Case ==
 
Picture an opaque screen with a circular aperture of radius a.<br><br>  
 
Picture an opaque screen with a circular aperture of radius a.<br><br>  
Let<math>\mathcal{J}(r')=\int_0^a rdr\int_0^{2\pi} d\phi\, \frac{e^{ik|\mathbf{r}-\mathbf{r}'|}}{|\mathbf{r}-\mathbf{r}'|}</math><br><br>
+
Let<math>\mathcal{J}(r')=\int_0^a rdr\int_0^{2\pi} d\phi\, \frac{e^{ik|\mathbf{r}-\mathbf{r}'|}}{|\mathbf{r}-\mathbf{r}'|^2}</math><br><br>
 
Then <math>A(r')=\frac{z'\dot{A_0}}{2\pi c}e^{-ikct'}\mathcal{J}(r')</math><br><br>
 
Then <math>A(r')=\frac{z'\dot{A_0}}{2\pi c}e^{-ikct'}\mathcal{J}(r')</math><br><br>
 
But <math>|\mathbf{r}-\mathbf{r}'|=\sqrt{(x-x')^2+(y-y')^2+z'^2}</math>
 
But <math>|\mathbf{r}-\mathbf{r}'|=\sqrt{(x-x')^2+(y-y')^2+z'^2}</math>
 
::<math>=\sqrt{r^2+r'^2+2r\rho^2\cos\phi}</math><br>
 
::<math>=\sqrt{r^2+r'^2+2r\rho^2\cos\phi}</math><br>
 
::<math>=r'-\frac{2r\rho'\cos\phi}{2r'}\frac{\rho'}{r'}\sin\theta'</math><br><br>
 
::<math>=r'-\frac{2r\rho'\cos\phi}{2r'}\frac{\rho'}{r'}\sin\theta'</math><br><br>
so that <math>\frac{1}{|\mathbf{r}-\mathbf{r}'|^2} \approx \frac{1}{r'^2}\left(1+\frac{2r\sin\theta'\cos\phi}{r'}\right)</math>
+
so that <math>\frac{1}{|\mathbf{r}-\mathbf{r}'|^2} \approx \frac{1}{r'^2}\left(1+\frac{2r\sin\theta'\cos\phi}{r'}\right)</math><br><br>
 +
In this particular case, we are dealing with far-field effects only, so <math>\frac{2r\sin\theta'\cos\phi}{r'}\rightarrow 0 </math> and <math>\frac{1}{|\mathbf{r}-\mathbf{r}'|^2} \approx 1</math><br><br>
 +
So, <math> \mathcal{J}(r')=\int_0^a rdr\int_0^{2\pi} d\phi\, \frac{e^{ik|\mathbf{r}-\mathbf{r}'|}}{|\mathbf{r}-\mathbf{r}'|}=\frac{e^{ikr'}}{r'^2}\int_0^a rdr\int_0^{2\pi} d\phi\, e^{-ikr\sin{\theta}'\cos{\phi}}</math><br><br>

Revision as of 19:57, 6 July 2009

We start off with Maxwell's Equation in the Lorentz gauge:


where we use the metric signature (+,+,+,-) and





The gauge condition for the Lorentz gauge is


Introduce the Green's function at from some impulse source at


and its Fourier transform


Translational symmetry implies

so that



where . But




Chose the "retarded" solution, such that the function is zero unless t>t'.











But the term so that


Now to get the in the half-space with z>0 with the boundary condition at   we take the difference:



Now use Green's theorem, with the generating function







, let



Now invoke the divergence theorem on the half space :

, where the last term is zero by the condition of



To do the t integral, I need to bring out the z derivative. To do this, I first turn it into a z' derivative, using the relation

where





At ,

If is independent of position, as in a plane wave propagating along the z axis, then:



This gives us uniform translation of waves at velocity c. More generally:







In our case, we consider only those waves which drop off as , so


In cylindrical coordinates, . Without loss of generality, we consider a harmonic solution with a particular frequency ω = kc.



Special Case

Picture an opaque screen with a circular aperture of radius a.

Let

Then

But




so that

In this particular case, we are dealing with far-field effects only, so and

So,