Difference between revisions of "Huygens Principle for a Planar Source"

From UConn PAN
Jump to navigation Jump to search
Line 11: Line 11:
 
and its Fourier transform
 
and its Fourier transform
 
:<math> \tilde{G} (q) = \frac{1}{(2\pi)^2} \int d^4r e^{-iq\cdot r} G(r,0)</math>
 
:<math> \tilde{G} (q) = \frac{1}{(2\pi)^2} \int d^4r e^{-iq\cdot r} G(r,0)</math>
:<math> G(r,0)=\frac{1}{(2\pi)^2} \int d^4qe^{iq\cdot r} \tilde{G}(q)</math>
+
:<math> G(r,0)=\frac{1}{(2\pi)^2} \int d^4qe^{iq\cdot r} \tilde{G}(q)</math><br>
 
Translational symmetry implies
 
Translational symmetry implies
:<math>G(r-r',0)=G(r,r') \quad </math>
+
:<math>G(r-r',0)=G(r,r')</math>
 
 
 
&there4;<math> G(r,r')=\frac{1}{(2\pi)^2}\int d^4q e^{iq\cdot (r-r')} \tilde{G} (q)</math><br> <math>\square^2_rG(r,r')=\frac{1}{(2\pi)^2}\int d^4qe^{iq\cdot (r-r')}\tilde{G}(q)</math><br><br>
 
&there4;<math> G(r,r')=\frac{1}{(2\pi)^2}\int d^4q e^{iq\cdot (r-r')} \tilde{G} (q)</math><br> <math>\square^2_rG(r,r')=\frac{1}{(2\pi)^2}\int d^4qe^{iq\cdot (r-r')}\tilde{G}(q)</math><br><br>
 
<math>\square^2_rG(r,r')=\frac{1}{(2\pi)^2}\int d^4qe^{iq\cdot (r-r')}(-k^2+\frac{\omega^2}{c^2})</math>, where <math>q=(\mathbf{k},\frac{\omega}{c}) \quad</math><br><br>
 
<math>\square^2_rG(r,r')=\frac{1}{(2\pi)^2}\int d^4qe^{iq\cdot (r-r')}(-k^2+\frac{\omega^2}{c^2})</math>, where <math>q=(\mathbf{k},\frac{\omega}{c}) \quad</math><br><br>

Revision as of 23:52, 3 July 2009

We start off with Maxwell's Equation in the Lorentz gauge:


where we use the metric signature (+,+,+,-) and





The gauge condition for the Lorentz gauge is


Introduce the Green's function at from some impulse source at


and its Fourier transform


Translational symmetry implies




, where

But,





Chose the "retarded" solution, such that the function is zero unless t>t'











But the term



Now to get the in the half-space with z>0 with the boundary condition at we take the difference:



Now use Green's theorem:

Let



But

, let



Now invoke the divergence theorem on the half space :

, where the last term is zero by the condition of



To do the t integral, I need to bring out the z derivative. To do this, I first turn it into a z' derivative, using the relation:


, where





At ,

If is independent of position, as in a plane wave propagating along the z axis, then:



This gives us uniform translation of waves at velocity c. More generally:







In our case, we consider only those waves which drop off as , so:





In cylindrical coordinates, . Also, . So:



Special Case

Picture an opaque screen with a circular aperture of radius a.

Let

Then