Difference between revisions of "Huygens Principle for a Planar Source"

From UConn PAN
Jump to navigation Jump to search
Line 7: Line 7:
 
The gauge condition for the Lorentz gauge is
 
The gauge condition for the Lorentz gauge is
 
:<math>\part_\mu A^\mu = 0 \rArr \mathbf{\nabla} \cdot \mathbf{A}-\frac{1}{c^2} \frac{\part\Phi}{\part t}=0</math><br>
 
:<math>\part_\mu A^\mu = 0 \rArr \mathbf{\nabla} \cdot \mathbf{A}-\frac{1}{c^2} \frac{\part\Phi}{\part t}=0</math><br>
Introduce the Green's function at <math> (\mathbf{r},t)=r \quad</math> from some impulse source at<math> r'=(\mathbf{r}',t') \quad</math><br><br>
+
Introduce the Green's function at <math> r=(\mathbf{r},t)</math> from some impulse source at <math> r'=(\mathbf{r}',t')</math>.
<math>\square^2_rG(r,r')=\delta^4(r-r')</math><br><br>
+
:<math>\square^2_rG(r,r')=\delta^4(r-r')</math><br><br>
 
Let <math> \tilde{G} (q) = \frac{1}{(2\pi)^2} \int d^4r e^{-iq\cdot r} G(r,0)</math><br><br>
 
Let <math> \tilde{G} (q) = \frac{1}{(2\pi)^2} \int d^4r e^{-iq\cdot r} G(r,0)</math><br><br>
 
Then <math> G(r,0)=\frac{1}{(2\pi)^2} \int d^4qe^{iq\cdot r} \tilde{G}(q)</math><br><br>
 
Then <math> G(r,0)=\frac{1}{(2\pi)^2} \int d^4qe^{iq\cdot r} \tilde{G}(q)</math><br><br>

Revision as of 23:47, 3 July 2009

We start off with Maxwell's Equation in the Lorentz gauge:


where we use the metric signature (+,+,+,-) and

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle A^\mu = (\mathbf{A},\frac{\Phi} {c})}
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \square^2=\part_\mu \part^\mu = \nabla^2 - \frac{1}{c^2} \frac{\part^2}{\part t^2}}
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle j^\mu = (\mathbf{j},c\rho), \part_\mu= (\mathbf{\nabla}, \frac{1}{c} \frac{\part}{\part t})}

The gauge condition for the Lorentz gauge is


Introduce the Green's function at from some impulse source at Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r'=(\mathbf{r}',t')} .

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \square^2_rG(r,r')=\delta^4(r-r')}

Let Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \tilde{G} (q) = \frac{1}{(2\pi)^2} \int d^4r e^{-iq\cdot r} G(r,0)}

Then Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle G(r,0)=\frac{1}{(2\pi)^2} \int d^4qe^{iq\cdot r} \tilde{G}(q)}

Translational symmetry implies:



Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle G(r,r')=\frac{1}{(2\pi)^2}\int d^4q e^{iq\cdot (r-r')} \tilde{G} (q)}
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \square^2_rG(r,r')=\frac{1}{(2\pi)^2}\int d^4qe^{iq\cdot (r-r')}\tilde{G}(q)}

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \square^2_rG(r,r')=\frac{1}{(2\pi)^2}\int d^4qe^{iq\cdot (r-r')}(-k^2+\frac{\omega^2}{c^2})} , where Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q=(\mathbf{k},\frac{\omega}{c}) \quad}

But, Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \square^2_rG(r,r')=\delta^4(r-r')=\frac{1}{(2\pi)^4}\int d^4q e^{iq\cdot (r-r')}}

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \tilde{G}(q)=\frac{(2\pi)^2}{(2\pi)^4}\frac{1}{-q^2}= \frac{-1}{(2\pi)^2q^2}}

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle G(r,r')=\frac{-1}{(2\pi)^4} \int d^4qe^{iq\cdot (r-r')} \frac{1}{(k+\frac{\omega}{c})(k-\frac{\omega}{c})}}

Chose the "retarded" solution, such that the function is zero unless t>t'

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle G(r,r')=\frac{1}{(2\pi)^4}\int d^3ke^{i\mathbf{k}\cdot (r-r')}\int d(\frac{\omega}{c}) \frac{e^{-i\omega(t-t')}}{(\frac{\omega}{c}-k)(\frac{\omega}{c}+k)}\Theta(t-t')}



Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle =\frac{-2\pi}{(2\pi)^4}\int_0 \frac{k^2dk}{k} \sin\left({ck(t-t')}\right) 2\pi\int_{-1}^1 dze^{ik|\mathbf{r}-\mathbf{r'}|z}\Theta}

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle =\frac{-1}{(2\pi)^2}\left(\frac{1}{|\mathbf{r}-\mathbf{r'|}}\right)2\int_0 dk \sin(ck(t-t')) \sin(k|\mathbf{r}-\mathbf{r'}|)\Theta}

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle =\frac{1}{(2\pi)^2}\frac{2}{|\mathbf{r}-\mathbf{r}'|}\frac{2\pi}{4} \left[\delta(|\mathbf{r}-\mathbf{r}'|+c(t-t'))-\delta(|\mathbf{r}-\mathbf{r}'|-c(t-t'))\right]\Theta}

But the term Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \delta(|\mathbf{r}-\mathbf{r}'|+c(t-t'))\rightarrow 0 \quad\forall\quad t>t'}

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle G(r,r')=\frac{-1}{4\pi}\quad \frac{\delta(|\mathbf{r}-\mathbf{r}'|-c(t-t'))}{|\mathbf{r}-\mathbf{r}'|}}

Now to get the Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle G_1(r,r')\quad } in the half-space with z>0 with the boundary condition Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle G_1\quad } atFailed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r_3=z=0 \quad} we take the difference:

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle G_1(r,r')=\frac{-1}{4\pi}\left(\frac{\delta(|\mathbf{r}-\mathbf{r}'|-c(t-t'))}{|\mathbf{r}-\mathbf{r}'|}-\frac{\delta(|\mathbf{r}-\mathbf{r}'+2z'\hat{e_3}|-c(t-t'))}{|\mathbf{r}-\mathbf{r}'+2z'\hat{e_3}|}\right)}

Now use Green's theorem:

Let Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle F^\mu=A(r)\part_\mu G_1(r,r')-G_1(r,r')\part_\mu A(r)}

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \int \part_\mu F_\mu d^4r= \int cdt \int d^3r[\part_\mu A \part^\mu G+A\part_\mu \part^\mu G_1-\part_\mu G \part^\mu A -G_1\part_\mu \part^\mu A]}

But Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \part_\mu \part^\mu G_1(r,r')=\delta^4(r-r')}

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \part_\mu \part^\mu A(r)= \mu j(r)} , let Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle j(r)=0 \quad}

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \int \part_\mu F_\mu d^4r=A(r')}

Now invoke the divergence theorem on the half space Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle z>0 \quad} :

, where the last term is zero by the condition ofFailed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle G_1(z=0,r')=0 \quad}

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle A(r')=-c\int dt\int d^2rA(r)\frac{\part}{\part z}G_1(r,r')}

To do the t integral, I need to bring out the z derivative. To do this, I first turn it into a z' derivative, using the relation:


Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle G_1(r,r')=\frac{-1}{4\pi}\left(\frac{\delta(|\mathbf{r}-\mathbf{r}'|-c(t-t'))}{|\mathbf{r}-\mathbf{r}'|}-\frac{\delta(|\mathbf{r}-\mathbf{r}''|-c(t-t'))}{|\mathbf{r}-\mathbf{r}''|}\right)} , where Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathbf{r}''=\mathbf{r}'-2z'\hat{e_3}}

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{\part}{\part z}G_1(r,r')=\frac{-1}{4\pi}\left(\frac{\part}{\part z}\left(\frac{\delta(|\mathbf{r}-\mathbf{r}'|-c(t-t'))}{|\mathbf{r}-\mathbf{r}'|}-\frac{\delta(|\mathbf{r}-\mathbf{r}''|-c(t-t'))}{|\mathbf{r}-\mathbf{r}''|}\right)\right)}



At Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle z=0 \quad } , Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle |\mathbf{r}-\mathbf{r}'|=\sqrt{r^2+z'^2}=S, dS=\frac{rdr}{\sqrt{r^2+z'^2}}}

IfFailed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle A(\mathbf{r},t) \quad} is independent of position, as in a plane wave propagating along the z axis, then:

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle A(r')=\frac{-\part}{\part z'}\int_{z'}^\infin dS A\left(\mathbf{0},t-\frac{S}{c}\right)=A\left(\mathbf{\mathbf{0}},t'-\frac{z'}{c}\right)}

This gives us uniform translation of waves at velocity c. More generally:



Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle =\frac{-1}{2\pi}\int_{z=0} d^2r\left(\frac{A\left(\mathbf{r},t'-\frac{|\mathbf{r}-\mathbf{r}'|}{c}\right)}{|\mathbf{r}-\mathbf{r}'|^3}(-z')+\frac{\dot{A}\left(\mathbf{r},t'-\frac{|\mathbf{r}-\mathbf{r}'|}{c}\right)}{|\mathbf{r}-\mathbf{r}'|c}\frac{-z'}{|\mathbf{r}-\mathbf{r}'|}\right)}

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle A(r')=\frac{-1}{2\pi}\int_{z=0} d^2r\left(\frac{A\left(\mathbf{r},t'-\frac{|\mathbf{r}-\mathbf{r}'|}{c}\right)}{|\mathbf{r}-\mathbf{r}'|^3}(-z')+\frac{1}{c}\frac{\dot{A}\left(\mathbf{r},t'-\frac{|\mathbf{r}-\mathbf{r}'|}{c}\right)}{|\mathbf{r}-\mathbf{r}'|^2}(-z')\right)}

In our case, we consider only those waves which drop off as Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{1}{r'} \quad} , so:

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle A(r')=\frac{1}{2\pi}\int_{z=0} d^2r\left(\frac{1}{c}\frac{\dot{A}\left(\mathbf{r},t'-\frac{|\mathbf{r}-\mathbf{r}'|}{c}\right)}{|\mathbf{r}-\mathbf{r}'|^2}(z')\right)}

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle A(r')=\frac{z'}{2\pi c}\int_{z=0} d^2r\left(\frac{\dot{A}\left(\mathbf{r},t'-\frac{|\mathbf{r}-\mathbf{r}'|}{c}\right)}{|\mathbf{r}-\mathbf{r}'|^2}\right)}

In cylindrical coordinates, Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle d^2r=rdrd\phi \quad} . Also, Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \dot{A}\left(\mathbf{r},t'-\frac{|\mathbf{r}-\mathbf{r}'|}{c}\right)=\dot{A}(\mathbf{r},0)e^{-ik(t'c-|\mathbf{r}-\mathbf{r}'|)}} . So:

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle A(r')=\frac{z'\dot{A_0}}{2\pi c}\int_{z=0} rdrd\phi \frac{e^{-ik(t'c-|\mathbf{r}-\mathbf{r}'|)}}{|\mathbf{r}-\mathbf{r}'|^2}}

Special Case

Picture an opaque screen with a circular aperture of radius a.

LetFailed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathcal{J}(r')=\int_0^a rdr\int_0^{2\pi} d\phi \frac{e^{ik|\mathbf{r}-\mathbf{r}'|}}{|\mathbf{r}-\mathbf{r}'|}}

Then Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle A(r')=\frac{z'\dot{A_0}}{2\pi c}e^{-ikct'}\mathcal{J}(r')}

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle |\mathbf{r}-\mathbf{r}'|=\sqrt{(x-x')^2+(y-y')^2+z'^2}=\sqrt{r^2+r'^2+2r\rho^2\cos\phi}}

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle =r'-\frac{2r\rho'\cos\phi}{2r'}, \frac{\rho'}{r'}=\sin\theta'}

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{1}{|\mathbf{r}-\mathbf{r}'|^2} \approx \frac{1}{r'^2}\left(1+\frac{2r\sin\theta'\cos\phi}{r'}\right)}