Difference between revisions of "Huygens Principle for a Planar Source"
| (25 intermediate revisions by 2 users not shown) | |||
| Line 10: | Line 10: | ||
:<math>\square^2_rG(r,r')=\delta^4(r-r')</math><br> | :<math>\square^2_rG(r,r')=\delta^4(r-r')</math><br> | ||
and its Fourier transform | and its Fourier transform | ||
| − | :<math> \tilde{G} (q) = \frac{1}{(2\pi)^2} \int d^4r e^{-iq\cdot r} G(r,0)</math> | + | :<math> \tilde{G} (q) = \frac{1}{(2\pi)^2} \int d^4r\, e^{-iq\cdot r} G(r,0)</math> |
| − | :<math> G(r,0)=\frac{1}{(2\pi)^2} \int d^ | + | :<math> G(r,0)=\frac{1}{(2\pi)^2} \int d^4q\, e^{iq\cdot r} \tilde{G}(q)</math><br> |
Translational symmetry implies | Translational symmetry implies | ||
| − | :<math>G(r-r',0)=G(r,r')</math> | + | :<math>G(r-r',0)=G(r,r')\quad</math> |
| − | + | so that | |
| − | <math>\square^2_rG(r,r')=\frac{1}{(2\pi)^2}\int d^ | + | :<math> G(r,r')=\frac{1}{(2\pi)^2}\int d^4q\, e^{iq\cdot (r-r')} \tilde{G} (q)</math><br> |
| − | + | :<math>\square^2_rG(r,r')=\frac{1}{(2\pi)^2}\int d^4q\,(-q^2)e^{iq\cdot (r-r')}\tilde{G}(q)</math><br> | |
| − | + | :<math>\square^2_rG(r,r')=\frac{1}{(2\pi)^2}\int d^4q\, e^{iq\cdot (r-r')}(-k^2+\frac{\omega^2}{c^2})</math> | |
| − | <math>G(r,r')=\frac{-1}{(2\pi)^4} \int d^ | + | where <math>q=(\mathbf{k},\frac{\omega}{c})</math>. But |
| − | Chose the "retarded" solution, such that the function is zero unless t>t' | + | :<math>\square^2_rG(r,r')=\delta^4(r-r')=\frac{1}{(2\pi)^4}\int d^4q\, e^{iq\cdot (r-r')}</math><br> |
| − | <math>G(r,r')=\frac{1}{(2\pi)^4}\int d^ | + | :<math>\tilde{G}(q)=\frac{(2\pi)^2}{(2\pi)^4}\frac{1}{-q^2}= \frac{-1}{(2\pi)^2q^2}</math><br> |
| − | <math>=\frac{1}{(2\pi)^4}\int d^ | + | :<math>G(r,r')=\frac{-1}{(2\pi)^4} \int d^4q\, e^{iq\cdot (r-r')} \frac{1}{(k+\frac{\omega}{c})(k-\frac{\omega}{c})}</math><br> |
| − | <math>=\frac{-2\pi}{(2\pi)^4}\int_0 \frac{k^2dk}{k} \sin\left({ck(t-t')}\right) 2\pi\int_{-1}^1 dze^{ik|\mathbf{r}-\mathbf{r'}|z}\Theta</math><br><br> | + | Chose the "retarded" solution, such that the function is zero unless t>t'.<br> |
| − | <math>=\frac{-1}{(2\pi)^2}\left(\frac{1}{|\mathbf{r}-\mathbf{r'|}}\right)2\int_0 dk \sin(ck(t-t')) \sin(k|\mathbf{r}-\mathbf{r'}|)\Theta</math><br><br> | + | :<math>G(r,r')=\frac{1}{(2\pi)^4}\int d^3k\, e^{i\mathbf{k}\cdot (r-r')}\int d(\frac{\omega}{c}) \frac{e^{-i\omega(t-t')}}{(\frac{\omega}{c}-k)(\frac{\omega}{c}+k)}\Theta(t-t')</math><br><br> |
| − | <math>=\frac{1}{(2\pi)^2}\frac{2}{|\mathbf{r}-\mathbf{r}'|}\frac{2\pi}{4} \left[\delta(|\mathbf{r}-\mathbf{r}'|+c(t-t'))-\delta(|\mathbf{r}-\mathbf{r}'|-c(t-t'))\right]\Theta</math><br><br> | + | ::<math>=\frac{1}{(2\pi)^4}\int d^3k\, e^{i\mathbf{k}\cdot (r-r')}(2\pi i \frac{e^{ick(t-t')}-e^{-ick(t-t')}}{2k})\Theta</math><br><br> |
| − | But the term <math>\delta(|\mathbf{r}-\mathbf{r}'|+c(t-t'))\rightarrow 0 \quad\forall\quad t>t'</math> | + | ::<math>=\frac{-2\pi}{(2\pi)^4}\int_0 \frac{k^2dk}{k} \sin\left({ck(t-t')}\right) 2\pi\int_{-1}^1 dze^{ik|\mathbf{r}-\mathbf{r'}|z}\Theta</math><br><br> |
| − | + | ::<math>=\frac{-1}{(2\pi)^2}\left(\frac{1}{|\mathbf{r}-\mathbf{r'|}}\right)2\int_0 dk \sin(ck(t-t')) \sin(k|\mathbf{r}-\mathbf{r'}|)\Theta</math><br><br> | |
| − | Now to get the <math>G_1(r,r')\quad </math> in the half-space with z>0 with the boundary condition <math>G_1\quad </math> at<math> r_3=z=0 \quad</math> we take the difference:<br><br> | + | ::<math>=\frac{1}{(2\pi)^2}\frac{2}{|\mathbf{r}-\mathbf{r}'|}\frac{2\pi}{4} \left[\delta(|\mathbf{r}-\mathbf{r}'|+c(t-t'))-\delta(|\mathbf{r}-\mathbf{r}'|-c(t-t'))\right]\Theta</math><br> |
| − | <math>G_1(r,r')=\frac{-1}{4\pi}\left(\frac{\delta(|\mathbf{r}-\mathbf{r}'|-c(t-t'))}{|\mathbf{r}-\mathbf{r}'|}-\frac{\delta(|\mathbf{r}-\mathbf{r}'+2z'\hat{e_3}|-c(t-t'))}{|\mathbf{r}-\mathbf{r}'+2z'\hat{e_3}|}\right)</math><br><br> | + | <br> |
| − | Now use Green's theorem: | + | But the term <math>\delta(|\mathbf{r}-\mathbf{r}'|+c(t-t'))\rightarrow 0 \quad\forall\quad t>t'</math> so that |
| − | + | :<math> G(r,r')=\frac{-1}{4\pi}\quad \frac{\delta(|\mathbf{r}-\mathbf{r}'|-c(t-t'))}{|\mathbf{r}-\mathbf{r}'|}</math><br> | |
| − | <math>\int \part_\mu F_\mu d^4r= \int cdt \int d^3r[\part_\mu A \part^\mu G+A\part_\mu \part^\mu G_1-\part_\mu G \part^\mu A -G_1\part_\mu \part^\mu A]</math><br><br> | + | |
| − | + | Now to get the <math>G_1(r,r')\quad </math> in the half-space with z>0 with the boundary condition <math>G_1\quad </math> at<math> r_3=z=0 \quad</math> we take the difference:<br><br> | |
| − | <math>\part_\mu \part^\mu A(r)= \mu j(r)</math>, let <math>j(r)=0 \quad</math><br><br> | + | :<math>G_1(r,r')=\frac{-1}{4\pi}\left(\frac{\delta(|\mathbf{r}-\mathbf{r}'|-c(t-t'))}{|\mathbf{r}-\mathbf{r}'|}-\frac{\delta(|\mathbf{r}-\mathbf{r}'+2z'\hat{e_3}|-c(t-t'))}{|\mathbf{r}-\mathbf{r}'+2z'\hat{e_3}|}\right)</math><br><br> |
| − | <math>\int \part_\mu F_\mu d^4r=A(r')</math><br><br> | + | Now use Green's theorem, with the generating function |
| + | :<math>F^\mu=A(r)\part_\mu G_1(r,r')-G_1(r,r')\part_\mu A(r)</math><br><br> | ||
| + | :<math>\int \part_\mu F_\mu d^4r= \int cdt \int d^3r[\part_\mu A \part^\mu G+A\part_\mu \part^\mu G_1-\part_\mu G \part^\mu A -G_1\part_\mu \part^\mu A]</math><br><br> | ||
| + | :<math>\part_\mu \part^\mu G_1(r,r')=\delta^4(r-r')</math><br><br> | ||
| + | :<math>\part_\mu \part^\mu A(r)= \mu j(r)</math>, let <math>j(r)=0 \quad</math><br><br> | ||
| + | :<math>\int \part_\mu F_\mu d^4r=A(r')</math><br><br> | ||
Now invoke the divergence theorem on the half space <math>z>0 \quad</math>:<br><br> | Now invoke the divergence theorem on the half space <math>z>0 \quad</math>:<br><br> | ||
| − | <math>A(r')=-\int d^2r\int cdt\left[A(r)\frac{\part}{\part z}G_1(r,r')-G_1(r,r')\frac{\part}{\part z}A(r)\right]</math>, where the last term is zero by the condition of<math>G_1(z=0,r')=0 \quad</math><br><br> | + | :<math>A(r')=-\int d^2r\int cdt\left[A(r)\frac{\part}{\part z}G_1(r,r')-G_1(r,r')\frac{\part}{\part z}A(r)\right]</math>, where the last term is zero by the condition of<math>G_1(z=0,r')=0 \quad</math><br><br> |
| − | <math>A(r')=-c\int dt\int d^2rA(r)\frac{\part}{\part z}G_1(r,r')</math><br><br> | + | :<math>A(r')=-c\int dt\int d^2rA(r)\frac{\part}{\part z}G_1(r,r')</math><br><br> |
| − | To do the t integral, I need to bring out the z derivative. To do this, I first turn it into a z' derivative, using the relation | + | |
| − | <math>G_1(r,r')=\frac{-1}{4\pi}\left(\frac{\delta(|\mathbf{r}-\mathbf{r}'|-c(t-t'))}{|\mathbf{r}-\mathbf{r}'|}-\frac{\delta(|\mathbf{r}-\mathbf{r}''|-c(t-t'))}{|\mathbf{r}-\mathbf{r}''|}\right)</math> | + | To do the t integral, I need to bring out the z derivative. To do this, I first turn it into a z' derivative, using the relation<br> |
| − | <math>\frac{\part}{\part z}G_1(r,r')=\frac{-1}{4\pi}\left(\frac{\part}{\part z}\left(\frac{\delta(|\mathbf{r}-\mathbf{r}'|-c(t-t'))}{|\mathbf{r}-\mathbf{r}'|}-\frac{\delta(|\mathbf{r}-\mathbf{r}''|-c(t-t'))}{|\mathbf{r}-\mathbf{r}''|}\right)\right)</math><br><br> | + | :<math>G_1(r,r')=\frac{-1}{4\pi}\left(\frac{\delta(|\mathbf{r}-\mathbf{r}'|-c(t-t'))}{|\mathbf{r}-\mathbf{r}'|}-\frac{\delta(|\mathbf{r}-\mathbf{r}''|-c(t-t'))}{|\mathbf{r}-\mathbf{r}''|}\right)</math> |
| + | where <math>\mathbf{r}''=\mathbf{r}'-2z'\hat{e_3}</math><br><br> | ||
| + | :<math>\frac{\part}{\part z}G_1(r,r')=\frac{-1}{4\pi}\left(\frac{\part}{\part z}\left(\frac{\delta(|\mathbf{r}-\mathbf{r}'|-c(t-t'))}{|\mathbf{r}-\mathbf{r}'|}-\frac{\delta(|\mathbf{r}-\mathbf{r}''|-c(t-t'))}{|\mathbf{r}-\mathbf{r}''|}\right)\right)</math><br><br> | ||
∴ <math>A(r')=\frac{-1}{4\pi}\frac{\part}{\part z'}\int_{z=0} d^2r\left(2\frac{A(\mathbf{r},t'-\frac{|\mathbf{r}-\mathbf{r}'|}{c})}{|\mathbf{r}-\mathbf{r}'|}\right)</math><br><br> | ∴ <math>A(r')=\frac{-1}{4\pi}\frac{\part}{\part z'}\int_{z=0} d^2r\left(2\frac{A(\mathbf{r},t'-\frac{|\mathbf{r}-\mathbf{r}'|}{c})}{|\mathbf{r}-\mathbf{r}'|}\right)</math><br><br> | ||
At <math>z=0 \quad </math>, <math>|\mathbf{r}-\mathbf{r}'|=\sqrt{r^2+z'^2}=S, dS=\frac{rdr}{\sqrt{r^2+z'^2}}</math><br><br> | At <math>z=0 \quad </math>, <math>|\mathbf{r}-\mathbf{r}'|=\sqrt{r^2+z'^2}=S, dS=\frac{rdr}{\sqrt{r^2+z'^2}}</math><br><br> | ||
If<math>A(\mathbf{r},t) \quad</math> is independent of position, as in a plane wave propagating along the z axis, then:<br><br> | If<math>A(\mathbf{r},t) \quad</math> is independent of position, as in a plane wave propagating along the z axis, then:<br><br> | ||
| − | <math>A(r')=\frac{-\part}{\part z'}\int_{z'}^\infin dS A\left(\mathbf{0},t-\frac{S}{c}\right)=A\left(\mathbf{\mathbf{0}},t'-\frac{z'}{c}\right)</math><br><br> | + | :<math>A(r')=\frac{-\part}{\part z'}\int_{z'}^\infin dS A\left(\mathbf{0},t-\frac{S}{c}\right)=A\left(\mathbf{\mathbf{0}},t'-\frac{z'}{c}\right)</math><br><br> |
This gives us uniform translation of waves at velocity c. More generally: <br><br> | This gives us uniform translation of waves at velocity c. More generally: <br><br> | ||
| − | <math>A(r')=\frac{-1}{2\pi}\int_{z=0} d^2r\frac{\part}{\part z'}\left(\frac{A\left(\mathbf{r}, t'-\frac{|\mathbf{r}-\mathbf{r}'|}{c}\right)}{|\mathbf{r}-\mathbf{r}'|}\right)</math><br><br> | + | :<math>A(r')=\frac{-1}{2\pi}\int_{z=0} d^2r\frac{\part}{\part z'}\left(\frac{A\left(\mathbf{r}, t'-\frac{|\mathbf{r}-\mathbf{r}'|}{c}\right)}{|\mathbf{r}-\mathbf{r}'|}\right)</math><br><br> |
| − | <math>=\frac{-1}{2\pi}\int_{z=0} d^2r\left(\frac{A\left(\mathbf{r},t'-\frac{|\mathbf{r}-\mathbf{r}'|}{c}\right)}{|\mathbf{r}-\mathbf{r}'|^3}(-z')+\frac{\dot{A}\left(\mathbf{r},t'-\frac{|\mathbf{r}-\mathbf{r}'|}{c}\right)}{|\mathbf{r}-\mathbf{r}'|c}\frac{-z'}{|\mathbf{r}-\mathbf{r}'|}\right)</math><br><br> | + | :<math>=\frac{-1}{2\pi}\int_{z=0} d^2r\left(\frac{A\left(\mathbf{r},t'-\frac{|\mathbf{r}-\mathbf{r}'|}{c}\right)}{|\mathbf{r}-\mathbf{r}'|^3}(-z')+\frac{\dot{A}\left(\mathbf{r},t'-\frac{|\mathbf{r}-\mathbf{r}'|}{c}\right)}{|\mathbf{r}-\mathbf{r}'|c}\frac{-z'}{|\mathbf{r}-\mathbf{r}'|}\right)</math><br><br> |
| − | <math>A(r')=\frac{-1}{2\pi}\int_{z=0} d^2r\left(\frac{A\left(\mathbf{r},t'-\frac{|\mathbf{r}-\mathbf{r}'|}{c}\right)}{|\mathbf{r}-\mathbf{r}'|^3}(-z')+\frac{1}{c}\frac{\dot{A}\left(\mathbf{r},t'-\frac{|\mathbf{r}-\mathbf{r}'|}{c}\right)}{|\mathbf{r}-\mathbf{r}'|^2}(-z')\right)</math><br><br> | + | :<math>A(r')=\frac{-1}{2\pi}\int_{z=0} d^2r\left(\frac{A\left(\mathbf{r},t'-\frac{|\mathbf{r}-\mathbf{r}'|}{c}\right)}{|\mathbf{r}-\mathbf{r}'|^3}(-z')+\frac{1}{c}\frac{\dot{A}\left(\mathbf{r},t'-\frac{|\mathbf{r}-\mathbf{r}'|}{c}\right)}{|\mathbf{r}-\mathbf{r}'|^2}(-z')\right)</math><br><br> |
| − | In our case, we consider only those waves which drop off as <math>\frac{1}{r'} \quad</math>, so | + | |
| − | + | In our case, we consider only those waves which drop off as <math>\frac{1}{r'} \quad</math>, so<br> | |
| − | <math>A(r')=\frac{z'}{2\pi c}\int_{z=0} d^2r\left(\frac{\dot{A}\left(\mathbf{r},t'-\frac{|\mathbf{r}-\mathbf{r}'|}{c}\right)}{|\mathbf{r}-\mathbf{r}'|^2}\right)</math><br> | + | :<math>A(r')=\frac{z'}{2\pi c}\int_{z=0} d^2r\left(\frac{\dot{A}\left(\mathbf{r},t'-\frac{|\mathbf{r}-\mathbf{r}'|}{c}\right)}{|\mathbf{r}-\mathbf{r}'|^2}\right)</math><br> |
| − | In cylindrical coordinates, <math>d^2r=rdrd\phi \quad</math>. | + | |
| − | <math>A(r')=\frac{ | + | In cylindrical coordinates, <math>d^2r=rdrd\phi \quad</math>. Without loss of generality, we consider a harmonic solution with a particular frequency ω = kc. |
| + | :<math>\dot{A}\left(\mathbf{r},t'-\frac{|\mathbf{r}-\mathbf{r}'|}{c}\right)=\dot{A}(\mathbf{r},0)e^{-ik(t'c-|\mathbf{r}-\mathbf{r}'|)}</math><br><br> | ||
| + | :<math>A(r')=\frac{ikz'}{2\pi}\,e^{-i\omega t'} \int_{z=0} rdrd\phi\, \frac{e^{ik|\mathbf{r}-\mathbf{r}'|)}}{|\mathbf{r}-\mathbf{r}'|^2}A_0(\mathbf{r},0)</math> | ||
| + | |||
== Special Case == | == Special Case == | ||
Picture an opaque screen with a circular aperture of radius a.<br><br> | Picture an opaque screen with a circular aperture of radius a.<br><br> | ||
| − | Let<math>\mathcal{J}(r')=\int_0^a rdr\int_0^{2\pi} d\phi \frac{e^{ik|\mathbf{r}-\mathbf{r}'|}}{|\mathbf{r}-\mathbf{r}'|}</math><br><br> | + | Let<math>\mathcal{J}(r')=\int_0^a rdr\int_0^{2\pi} d\phi\, \frac{e^{ik|\mathbf{r}-\mathbf{r}'|}}{|\mathbf{r}-\mathbf{r}'|^2}</math><br><br> |
Then <math>A(r')=\frac{z'\dot{A_0}}{2\pi c}e^{-ikct'}\mathcal{J}(r')</math><br><br> | Then <math>A(r')=\frac{z'\dot{A_0}}{2\pi c}e^{-ikct'}\mathcal{J}(r')</math><br><br> | ||
| − | <math>|\mathbf{r}-\mathbf{r}'|=\sqrt{(x-x')^2+(y-y')^2+z'^2}=\sqrt{r^2+r'^2+2r\rho^2\cos\phi}</math | + | But <math>|\mathbf{r}-\mathbf{r}'|=\sqrt{(x-x')^2+(y-y')^2+z'^2}</math> |
| − | <math>=r'-\frac{2r\rho'\cos\phi}{2r'}, \frac{\rho'}{r'}=\sin\theta'</math><br><br> | + | ::<math>=\sqrt{r^2+r'^2+2r\rho^2\cos\phi}</math><br> |
| − | <math>\frac{1}{|\mathbf{r}-\mathbf{r}'|^2} \approx \frac{1}{r'^2}\left(1+\frac{2r\sin\theta'\cos\phi}{r'}\right)</math> | + | ::<math>=r'-\frac{2r\rho'\cos\phi}{2r'}, \frac{\rho'}{r'}=\sin{\theta}'</math><br><br> |
| + | so that <math>|\mathbf{r}-\mathbf{r}'|=r'-r\cos{\phi}\sin{\theta}'</math> and <math> \frac{1}{|\mathbf{r}-\mathbf{r}'|^2} \approx \frac{1}{r'^2}\left(1+\frac{2r\sin\theta'\cos\phi}{r'}\right)</math><br><br> | ||
| + | In this particular case, we are dealing with far-field effects only, so <math>\frac{2r\sin\theta'\cos\phi}{r'}\rightarrow 0 </math> and <math>\frac{1}{|\mathbf{r}-\mathbf{r}'|^2} \approx \frac{1}{r'^2}</math><br><br> | ||
| + | So, <math> \mathcal{J}(r')=\int_0^a rdr\int_0^{2\pi} d\phi\, \frac{e^{ik|\mathbf{r}-\mathbf{r}'|}}{|\mathbf{r}-\mathbf{r}'|}=\frac{e^{ikr'}}{r'^2}\int_0^a rdr\int_0^{2\pi} d\phi\, e^{-ikr\sin{\theta}'\cos{\phi}}</math><br><br> | ||
| + | The integral <math>\int_0^{2\pi} d\phi\, e^{-ikr\sin{\theta}'\cos{\phi}}</math> is the integral representation of the zero order Bessel function of the first kind with <math> kr\sin{\theta}' \quad</math> as the argument. This gives us the equation:<br><br> | ||
| + | :<math>\mathcal{J}(r')=\frac{e^{ikr'}}{r'^2}\int_0^a rdr 2\pi J_0(kr \sin{\theta}') </math><br><br> | ||
| + | To simplify the math, we make use of the fact that we can represent this Bessel functions as the derivative of a Bessel function of a different order. In general, the formula to compute this derivative is <br><br> | ||
| + | :<math>z^{v-k}J_{v-k}(z)=\left(\frac{1}{z}\frac{\part}{\part z}\right)^kz^vJ_v(z)</math><br><br> | ||
| + | In this case, we take <math>v=k=1 \quad</math> and <math>z=kr\sin{\theta}' \quad</math>. So<br><br> | ||
| + | :<math>J_0(kr\sin{\theta}')=\left(\frac{1}{kr\sin{\theta}'}\frac{\part}{\part (kr\sin{\theta}')}\right)(kr\sin{\theta}')J_1(kr\sin{\theta}')</math><br><br> | ||
| + | This gives us the equation | ||
| + | :<math>\mathcal{J}(r')=2\pi\frac{e^{ikr'}}{r'^2}\int_0^a rdr \left(\frac{1}{kr\sin{\theta}'}\frac{\part}{\part (kr\sin{\theta}')}\right)(kr\sin{\theta}')J_1(kr\sin{\theta}')</math><br><br> | ||
| + | Let <math>x=kr\sin{\theta'} \quad </math> so that | ||
| + | :<math>\mathcal{J}(r')=2\pi\frac{e^{ikr'}}{k^2\sin^2{\theta}'r'^2}\int_0^{ka\sin{\theta'}} dx \frac{d}{dx}xJ_1(x)</math> | ||
| + | <math>\mathcal{J}(r')=2\pi\frac{e^{ikr'}}{k\sin{\theta}'r'^2}\left[aJ_1(ka\sin{\theta}')-0J_1(0k\sin{\theta}')\right]=2\pi\frac{e^{ikr'}}{k\sin{\theta}'r'^2}aJ_1(ka\sin{\theta}')</math><br><br> and <math>A(r')=\frac{z'\dot{A_0}}{2\pi c}e^{-i\omega t'} 2\pi\frac{e^{ikr'}}{k\sin{\theta}'r'^2}aJ_1(ka\sin{\theta}')=\frac{z'\dot{A_0}a}{c}\frac{e^{ikr'-i\omega t'}}{k\sin{\theta}'r'^2}J_1(ka\sin{\theta}')</math><br><br> | ||
| + | To find the angle to the diffraction minimum, we must find the zeroes of this amplitude function. This will occur when <math>J_1(ka\sin{\theta}')=0 \quad</math><br><br> | ||
| + | [[Image:Bessels_J0.svg|thumb|300px|right|Plot of Bessel function of the first kind, J<sub>α</sub>(x), for integer orders α=0,1,2.]] | ||
| + | |||
| + | To the right is a graph of three Bessel functions of the first order, specifically <math> J_0(x), J_1(x), and J_2(x) \quad</math>. As it is shown, the first zero of <math>J_1(x) \quad</math> will <br> | ||
| + | occur at <math>x=0 \quad</math>. This will correspond to the center of the pattern, at <math>\theta=0 \quad</math>. Here, we would expect a bright spot, so <math>A(r') \quad</math> should be positive and finite. At <math>\theta=0 \quad</math> the term <math>\frac{J_1(ka\sin{\theta}')}{\sin{\theta}'}</math> is positive and finite, so this expression gives the correct amplitude at <math>\theta=0 \quad</math>. The next zero of <math> J_1(x) \quad</math> corresponds to the first minumum of the diffraction pattern. In this case, this zero occurs at x=3.832. So, <math>ka\sin{\theta}'=3.832 \quad</math> . Since<math> k=\frac{2\pi}{\lambda}\quad</math> and <math> a=\frac{D}{2}\quad</math><br><br> | ||
| + | |||
| + | <math>\frac{2\pi D\sin{\theta}'}{2\lambda}=3.832\rightarrow \sin{\theta}'= \frac{1.22\lambda}{D}</math> | ||
Latest revision as of 20:50, 9 July 2009
We start off with Maxwell's Equation in the Lorentz gauge:
where we use the metric signature (+,+,+,-) and
The gauge condition for the Lorentz gauge is
Introduce the Green's function at from some impulse source at
and its Fourier transform
Translational symmetry implies
so that
where . But
Chose the "retarded" solution, such that the function is zero unless t>t'.
But the term so that
Now to get the in the half-space with z>0 with the boundary condition at we take the difference:
Now use Green's theorem, with the generating function
- , let
Now invoke the divergence theorem on the half space :
- , where the last term is zero by the condition of
To do the t integral, I need to bring out the z derivative. To do this, I first turn it into a z' derivative, using the relation
where
∴
At ,
If is independent of position, as in a plane wave propagating along the z axis, then:
This gives us uniform translation of waves at velocity c. More generally:
In our case, we consider only those waves which drop off as , so
In cylindrical coordinates, . Without loss of generality, we consider a harmonic solution with a particular frequency ω = kc.
Special Case
Picture an opaque screen with a circular aperture of radius a.
Let
Then
But
so that and
In this particular case, we are dealing with far-field effects only, so and
So,
The integral is the integral representation of the zero order Bessel function of the first kind with as the argument. This gives us the equation:
To simplify the math, we make use of the fact that we can represent this Bessel functions as the derivative of a Bessel function of a different order. In general, the formula to compute this derivative is
In this case, we take and . So
This gives us the equation
Let so that
and
To find the angle to the diffraction minimum, we must find the zeroes of this amplitude function. This will occur when
To the right is a graph of three Bessel functions of the first order, specifically . As it is shown, the first zero of will
occur at . This will correspond to the center of the pattern, at . Here, we would expect a bright spot, so should be positive and finite. At the term is positive and finite, so this expression gives the correct amplitude at . The next zero of corresponds to the first minumum of the diffraction pattern. In this case, this zero occurs at x=3.832. So, . Since and