Difference between revisions of "Huygens Principle for a Planar Source"

From UConn PAN
Jump to navigation Jump to search
Line 70: Line 70:
 
But <math>|\mathbf{r}-\mathbf{r}'|=\sqrt{(x-x')^2+(y-y')^2+z'^2}</math>
 
But <math>|\mathbf{r}-\mathbf{r}'|=\sqrt{(x-x')^2+(y-y')^2+z'^2}</math>
 
::<math>=\sqrt{r^2+r'^2+2r\rho^2\cos\phi}</math><br>
 
::<math>=\sqrt{r^2+r'^2+2r\rho^2\cos\phi}</math><br>
::<math>=r'-\frac{2r\rho'\cos\phi}{2r'}\frac{\rho'}{r'}\sin\theta'</math><br><br>
+
::<math>=r'-\frac{2r\rho'\cos\phi}{2r'}\frac{\rho'}{r'}=\sin{\theta}'</math><br><br>
so that <math>\frac{1}{|\mathbf{r}-\mathbf{r}'|^2} \approx \frac{1}{r'^2}\left(1+\frac{2r\sin\theta'\cos\phi}{r'}\right)</math><br><br>
+
so that <math>|\mathbf{r}-\mathbf{r}'|=r'-r\cos{\phi}\sin{\theta}'</math> and <math> \frac{1}{|\mathbf{r}-\mathbf{r}'|^2} \approx \frac{1}{r'^2}\left(1+\frac{2r\sin\theta'\cos\phi}{r'}\right)</math><br><br>
In this particular case, we are dealing with far-field effects only, so <math>\frac{2r\sin\theta'\cos\phi}{r'}\rightarrow 0 </math> and <math>\frac{1}{|\mathbf{r}-\mathbf{r}'|^2} \approx 1</math><br><br>
+
In this particular case, we are dealing with far-field effects only, so <math>\frac{2r\sin\theta'\cos\phi}{r'}\rightarrow 0 </math> and <math>\frac{1}{|\mathbf{r}-\mathbf{r}'|^2} \approx \frac{1}{r'^2}</math><br><br>
 
So, <math> \mathcal{J}(r')=\int_0^a rdr\int_0^{2\pi} d\phi\, \frac{e^{ik|\mathbf{r}-\mathbf{r}'|}}{|\mathbf{r}-\mathbf{r}'|}=\frac{e^{ikr'}}{r'^2}\int_0^a rdr\int_0^{2\pi} d\phi\, e^{-ikr\sin{\theta}'\cos{\phi}}</math><br><br>
 
So, <math> \mathcal{J}(r')=\int_0^a rdr\int_0^{2\pi} d\phi\, \frac{e^{ik|\mathbf{r}-\mathbf{r}'|}}{|\mathbf{r}-\mathbf{r}'|}=\frac{e^{ikr'}}{r'^2}\int_0^a rdr\int_0^{2\pi} d\phi\, e^{-ikr\sin{\theta}'\cos{\phi}}</math><br><br>
 +
The integral <math>\int_0^{2\pi} d\phi\, e^{-ikr\sin{\theta}'\cos{\phi}}</math> is the integral representation of the zero order Bessel function of the first kind with <math> kr\sin{\theta}' \quad</math> as the argument.  This gives us the equation:<br><br>
 +
<math>\mathcal{J}(r')=\frac{e^{ikr'}}{r'^2}\int_0^a rdr 2\pi J_0(kr \sin{\theta}') </math><br><br>
 +
To simplify the math, we make use of the fact that we can represent this Bessel functions as the derivative of a Bessel function of a different order.  In general, the formula to compute this derivative is <br><br> <math>z^{v-k}J_{v-k}(z)=\left(\frac{1}{z}\frac{\part}{\part z}\right)^kz^vJ_v(z)</math><br><br>
 +
In this case, we take <math>v=k=1 \quad</math> and <math>z=kr\sin{\theta}' \quad</math>.  So<br><br>
 +
<math>J_0(kr\sin{\theta}')=\left(\frac{1}{kr\sin{\theta}'}\frac{\part}{\part (kr\sin{\theta}')}\right)(kr\sin{\theta}')J_1(kr\sin{\theta}')=\frac{d}{k\sin{\theta}'dr} J_1(kr\sin{\theta}')</math><br><br>
 +
This gives us the equation<math>\mathcal{J}(r')=2\pi\frac{e^{ikr'}}{r'^2}\int_0^a rdr \frac{d}{k\sin{\theta}'dr} J_1(kr\sin{\theta}')</math><br><br>
 +
We invoke the principle that the integral of a derivative is the function evaluated at the end points to give us the equation<br><br><math>\mathcal{J}(r')=2\pi\frac{e^{ikr'}}{k\sin{\theta}'r'^2}\left[aJ_1(ka\sin{\theta}')-0J_1(0k\sin{\theta}')\right]=2\pi\frac{e^{ikr'}}{k\sin{\theta}'r'^2}aJ_1(ka\sin{\theta}')</math><br><br> and <math>A(r')=\frac{z'\dot{A_0}}{2\pi c}e^{-ikct'} 2\pi\frac{e^{ikr'}}{k\sin{\theta}'r'^2}aJ_1(ka\sin{\theta}')=\frac{z'\dot{A_0}a}{c}\frac{e^{ikr'-ikct'}}{k\sin{\theta}'r'^2}J_1(ka\sin{\theta}'</math>

Revision as of 15:25, 8 July 2009

We start off with Maxwell's Equation in the Lorentz gauge:


where we use the metric signature (+,+,+,-) and





The gauge condition for the Lorentz gauge is


Introduce the Green's function at from some impulse source at


and its Fourier transform


Translational symmetry implies

so that



where . But




Chose the "retarded" solution, such that the function is zero unless t>t'.











But the term so that


Now to get the in the half-space with z>0 with the boundary condition at   we take the difference:



Now use Green's theorem, with the generating function







, let



Now invoke the divergence theorem on the half space :

, where the last term is zero by the condition of



To do the t integral, I need to bring out the z derivative. To do this, I first turn it into a z' derivative, using the relation

where





At ,

If is independent of position, as in a plane wave propagating along the z axis, then:



This gives us uniform translation of waves at velocity c. More generally:







In our case, we consider only those waves which drop off as , so


In cylindrical coordinates, . Without loss of generality, we consider a harmonic solution with a particular frequency ω = kc.



Special Case

Picture an opaque screen with a circular aperture of radius a.

Let

Then

But




so that and

In this particular case, we are dealing with far-field effects only, so and

So,

The integral is the integral representation of the zero order Bessel function of the first kind with as the argument. This gives us the equation:



To simplify the math, we make use of the fact that we can represent this Bessel functions as the derivative of a Bessel function of a different order. In general, the formula to compute this derivative is



In this case, we take and . So



This gives us the equation

We invoke the principle that the integral of a derivative is the function evaluated at the end points to give us the equation



and