|
|
| Line 66: |
Line 66: |
| | == Special Case == | | == Special Case == |
| | Picture an opaque screen with a circular aperture of radius a.<br><br> | | Picture an opaque screen with a circular aperture of radius a.<br><br> |
| − | Let<math>\mathcal{J}(r')=\int_0^a rdr\int_0^{2\pi} d\phi\, \frac{e^{ik|\mathbf{r}-\mathbf{r}'|}}{|\mathbf{r}-\mathbf{r}'|}</math><br><br> | + | Let<math>\mathcal{J}(r')=\int_0^a rdr\int_0^{2\pi} d\phi\, \frac{e^{ik|\mathbf{r}-\mathbf{r}'|}}{|\mathbf{r}-\mathbf{r}'|^2}</math><br><br> |
| | Then <math>A(r')=\frac{z'\dot{A_0}}{2\pi c}e^{-ikct'}\mathcal{J}(r')</math><br><br> | | Then <math>A(r')=\frac{z'\dot{A_0}}{2\pi c}e^{-ikct'}\mathcal{J}(r')</math><br><br> |
| | But <math>|\mathbf{r}-\mathbf{r}'|=\sqrt{(x-x')^2+(y-y')^2+z'^2}</math> | | But <math>|\mathbf{r}-\mathbf{r}'|=\sqrt{(x-x')^2+(y-y')^2+z'^2}</math> |
| | ::<math>=\sqrt{r^2+r'^2+2r\rho^2\cos\phi}</math><br> | | ::<math>=\sqrt{r^2+r'^2+2r\rho^2\cos\phi}</math><br> |
| | ::<math>=r'-\frac{2r\rho'\cos\phi}{2r'}\frac{\rho'}{r'}\sin\theta'</math><br><br> | | ::<math>=r'-\frac{2r\rho'\cos\phi}{2r'}\frac{\rho'}{r'}\sin\theta'</math><br><br> |
| − | so that <math>\frac{1}{|\mathbf{r}-\mathbf{r}'|^2} \approx \frac{1}{r'^2}\left(1+\frac{2r\sin\theta'\cos\phi}{r'}\right)</math> | + | so that <math>\frac{1}{|\mathbf{r}-\mathbf{r}'|^2} \approx \frac{1}{r'^2}\left(1+\frac{2r\sin\theta'\cos\phi}{r'}\right)</math><br><br> |
| | + | In this particular case, we are dealing with far-field effects only, so <math>\frac{2r\sin\theta'\cos\phi}{r'}\rightarrow 0 </math> and <math>\frac{1}{|\mathbf{r}-\mathbf{r}'|^2} \approx 1</math><br><br> |
| | + | So, <math> \mathcal{J}(r')=\int_0^a rdr\int_0^{2\pi} d\phi\, \frac{e^{ik|\mathbf{r}-\mathbf{r}'|}}{|\mathbf{r}-\mathbf{r}'|}=\frac{e^{ikr'}}{r'^2}\int_0^a rdr\int_0^{2\pi} d\phi\, e^{-ikr\sin{\theta}'\cos{\phi}}</math><br><br> |
We start off with Maxwell's Equation in the Lorentz gauge:

where we use the metric signature (+,+,+,-) and



The gauge condition for the Lorentz gauge is

Introduce the Green's function at
from some impulse source at

and its Fourier transform


Translational symmetry implies

so that



where
. But



Chose the "retarded" solution, such that the function is zero unless t>t'.




![{\displaystyle ={\frac {1}{(2\pi )^{2}}}{\frac {2}{|\mathbf {r} -\mathbf {r} '|}}{\frac {2\pi }{4}}\left[\delta (|\mathbf {r} -\mathbf {r} '|+c(t-t'))-\delta (|\mathbf {r} -\mathbf {r} '|-c(t-t'))\right]\Theta }](https://wikimedia.org/api/rest_v1/media/math/render/svg/48541628af99cf28e2d003864682e6565eaa5915)
But the term
so that

Now to get the
in the half-space with z>0 with the boundary condition
at
we take the difference:

Now use Green's theorem, with the generating function

![{\displaystyle \int \partial _{\mu }F_{\mu }d^{4}r=\int cdt\int d^{3}r[\partial _{\mu }A\partial ^{\mu }G+A\partial _{\mu }\partial ^{\mu }G_{1}-\partial _{\mu }G\partial ^{\mu }A-G_{1}\partial _{\mu }\partial ^{\mu }A]}](https://wikimedia.org/api/rest_v1/media/math/render/svg/c807a3acf6af188a25a7f51900bfbaecacfcd486)

, let 

Now invoke the divergence theorem on the half space
:
, where the last term is zero by the condition of

To do the t integral, I need to bring out the z derivative. To do this, I first turn it into a z' derivative, using the relation

where 

∴ 
At
, 
If
is independent of position, as in a plane wave propagating along the z axis, then:

This gives us uniform translation of waves at velocity c. More generally:



In our case, we consider only those waves which drop off as
, so

In cylindrical coordinates,
. Without loss of generality, we consider a harmonic solution with a particular frequency ω = kc.


Special Case
Picture an opaque screen with a circular aperture of radius a.
Let
Then 
But


so that 
In this particular case, we are dealing with far-field effects only, so
and 
So, 