Difference between revisions of "Huygens Principle for a Planar Source"

From UConn PAN
Jump to navigation Jump to search
Line 43: Line 43:
 
:<math>A(r')=-\int d^2r\int cdt\left[A(r)\frac{\part}{\part z}G_1(r,r')-G_1(r,r')\frac{\part}{\part z}A(r)\right]</math>, where the last term is zero by the condition of<math>G_1(z=0,r')=0 \quad</math><br><br>
 
:<math>A(r')=-\int d^2r\int cdt\left[A(r)\frac{\part}{\part z}G_1(r,r')-G_1(r,r')\frac{\part}{\part z}A(r)\right]</math>, where the last term is zero by the condition of<math>G_1(z=0,r')=0 \quad</math><br><br>
 
:<math>A(r')=-c\int dt\int d^2rA(r)\frac{\part}{\part z}G_1(r,r')</math><br><br>
 
:<math>A(r')=-c\int dt\int d^2rA(r)\frac{\part}{\part z}G_1(r,r')</math><br><br>
To do the t integral, I need to bring out the z derivative.  To do this, I first turn it into a z' derivative, using the relation: <br><br><br>
+
 
 +
To do the t integral, I need to bring out the z derivative.  To do this, I first turn it into a z' derivative, using the relation<br>
 
:<math>G_1(r,r')=\frac{-1}{4\pi}\left(\frac{\delta(|\mathbf{r}-\mathbf{r}'|-c(t-t'))}{|\mathbf{r}-\mathbf{r}'|}-\frac{\delta(|\mathbf{r}-\mathbf{r}''|-c(t-t'))}{|\mathbf{r}-\mathbf{r}''|}\right)</math>, where :<math>\mathbf{r}''=\mathbf{r}'-2z'\hat{e_3}</math><br><br>
 
:<math>G_1(r,r')=\frac{-1}{4\pi}\left(\frac{\delta(|\mathbf{r}-\mathbf{r}'|-c(t-t'))}{|\mathbf{r}-\mathbf{r}'|}-\frac{\delta(|\mathbf{r}-\mathbf{r}''|-c(t-t'))}{|\mathbf{r}-\mathbf{r}''|}\right)</math>, where :<math>\mathbf{r}''=\mathbf{r}'-2z'\hat{e_3}</math><br><br>
 
:<math>\frac{\part}{\part z}G_1(r,r')=\frac{-1}{4\pi}\left(\frac{\part}{\part z}\left(\frac{\delta(|\mathbf{r}-\mathbf{r}'|-c(t-t'))}{|\mathbf{r}-\mathbf{r}'|}-\frac{\delta(|\mathbf{r}-\mathbf{r}''|-c(t-t'))}{|\mathbf{r}-\mathbf{r}''|}\right)\right)</math><br><br>
 
:<math>\frac{\part}{\part z}G_1(r,r')=\frac{-1}{4\pi}\left(\frac{\part}{\part z}\left(\frac{\delta(|\mathbf{r}-\mathbf{r}'|-c(t-t'))}{|\mathbf{r}-\mathbf{r}'|}-\frac{\delta(|\mathbf{r}-\mathbf{r}''|-c(t-t'))}{|\mathbf{r}-\mathbf{r}''|}\right)\right)</math><br><br>

Revision as of 00:55, 4 July 2009

We start off with Maxwell's Equation in the Lorentz gauge:


where we use the metric signature (+,+,+,-) and





The gauge condition for the Lorentz gauge is


Introduce the Green's function at from some impulse source at


and its Fourier transform


Translational symmetry implies

so that



where . But




Chose the "retarded" solution, such that the function is zero unless t>t'.











But the term so that


Now to get the in the half-space with z>0 with the boundary condition at   we take the difference:



Now use Green's theorem, with the generating function







, let



Now invoke the divergence theorem on the half space :

, where the last term is zero by the condition of



To do the t integral, I need to bring out the z derivative. To do this, I first turn it into a z' derivative, using the relation

, where :





At ,

If is independent of position, as in a plane wave propagating along the z axis, then:



This gives us uniform translation of waves at velocity c. More generally:







In our case, we consider only those waves which drop off as , so:





In cylindrical coordinates, . Also, . So:



Special Case

Picture an opaque screen with a circular aperture of radius a.

Let

Then