Changes

Jump to navigation Jump to search
no edit summary
Line 72: Line 72:  
I = \sum_{\alpha\beta}^n{
 
I = \sum_{\alpha\beta}^n{
 
     \left(\begin{array}{lr}a_\alpha & b_\beta\end{array}\right)
 
     \left(\begin{array}{lr}a_\alpha & b_\beta\end{array}\right)
     \left(\begin{array}{lr}\Re{I}_{\alpha\beta} &-\Im{I}_{\alpha\beta}  
+
     \left(\begin{array}{lr}\Re(I_{\alpha\beta}) &-\Im(I_{\alpha\beta})
           \\              \Im{I}_{\alpha\beta} & \Re{I}_{\alpha\beta}
+
           \\              \Im(I_{\alpha\beta}) & \Re(I_{\alpha\beta})
 
           \end{array}\right)
 
           \end{array}\right)
 
     \left(\begin{array}{c}a_\alpha \\ b_\beta\end{array}\right)
 
     \left(\begin{array}{c}a_\alpha \\ b_\beta\end{array}\right)
 
}
 
}
 
</math>
 
</math>
 +
:<math>
 +
= \sum_{\alpha\beta}^{2n}{a_\alpha b_\beta J_{\alpha\beta}}
 +
</math>
 +
where the sum over ''n'' complex parameters is expanded to a sum over 2''n'' real ones, and the matrix ''J'' represents the above ''2n''x''2n'' matrix of the elements of ''I''.
    
<math>
 
<math>

Navigation menu