Line 38:
Line 38:
= \sum_{\gamma,\delta}{\rho_{\gamma\delta}
= \sum_{\gamma,\delta}{\rho_{\gamma\delta}
\sum_{\alpha,\beta}^n{
\sum_{\alpha,\beta}^n{
−
u_\alpha u_\beta^* J_{\alpha \beta}
+
u_\alpha u_\beta^* J^{\gamma\delta}_{\alpha \beta}
}
}
}
}
Line 46:
Line 46:
When considering the uncertainty on the overall integral, both the errors on ''u'' parameters
When considering the uncertainty on the overall integral, both the errors on ''u'' parameters
−
and those from the finite MC set of events will contribute. A single detected event (i) can be viewed as one sample of a Poisson process, having therefore an uncertainty of
+
and those from the finite MC set of events will contribute. A single detected event (i) can be viewed as one sample in a process of independent events, having therefore a count uncertainty of
σ<sub>i</sub>=1. An integral over such events is then a weighted sum of such samples,
σ<sub>i</sub>=1. An integral over such events is then a weighted sum of such samples,
−
having therefore a contribution to the variance:
+
having resulting in a contribution to the variance:
<math>
<math>
Line 79:
Line 79:
<math>
<math>
\sigma_{fit}^2=
\sigma_{fit}^2=
−
\sum_{k,l}^n{ \sigma_{u_k}\sigma_{u_l}
+
\left| \sum_k^n{ \sigma_{u_k}
\frac{\partial}{\partial u_k}\left(
\frac{\partial}{\partial u_k}\left(
−
\sum_{\gamma,\delta}{\rho_{\gamma\delta}
+
\sum_{\gamma,\delta}{ \rho_{\gamma\delta}
−
\sum_{\alpha,\beta}^n{
+
\sum_{\alpha,\beta}^n{u_\alpha u_\beta^* J_{\alpha\beta}}
−
u_\alpha u_\beta^* J_{\alpha\beta}
+
}
+
\right)
+
}
+
\right|^2
+
</math>
+
::<math>
+
=\left( \sum_k^n{ \sigma_{u_k}
+
\sum_{\gamma,\delta}{ \rho_{\gamma\delta}
+
\sum_{\alpha,\beta}^n{\delta_{k\alpha} u_\beta^* J^{\gamma\delta}_{\alpha\beta}}
+
}
+
}\right)
+
\left( \sum_{k'}^n{ \sigma^*_{u_{k'}}
+
\sum_{\gamma',\delta'}{ \rho_{\gamma'\delta'}
+
\sum_{\alpha',\beta'}^n{\delta_{k'\alpha'} u_{\beta'} J^{\gamma'\delta'*}_{\alpha'\beta'}}
+
}
+
}\right)
+
</math>
+
::<math>
+
= \sum_{\gamma,\delta,\gamma',\delta'}{
+
\rho_{\gamma\delta} \rho_{\gamma'\delta'}
+
\sum_{\alpha,\beta,\alpha',\beta'}^n{
+
\left(\sigma_{u_\alpha}\sigma^*_{u_{\alpha'}}\right)
+
\left(u_\beta^* J^{\gamma\delta}_{\alpha\beta}\right)
+
\left(u_{\beta'} J^{\gamma'\delta'*}_{\alpha'\beta'} \right)
}
}
}
}
−
\right)
+
</math>
−
\frac{\partial}{\partial u_l}\left(
+
::<math>
−
\sum_{\gamma',\delta'}{\rho_{\gamma'\delta'}
+
= \sum_{\gamma,\delta,\gamma',\delta'}{
−
\sum_{\alpha',\beta'}^n{
+
\rho_{\gamma\delta} \rho_{\gamma'\delta'}
−
u_{\alpha'} u_{\beta'}^* J_{\alpha'\beta'}
+
\sum_{\alpha,\alpha'}^n{
+
\left(\sigma_{u_\alpha}\sigma^*_{u_{\alpha'}}\right)
+
G^{\gamma\delta*}_\alpha G_{\alpha'}^{\gamma\delta}
}
}
}
}
−
\right)
−
}
</math>
</math>
−
The product of σ terms in the summation are the error matrix derived from the fit.
+
+
The product of σ terms in the summation is represented by the error matrix derived from the fit. ''G'' was defined as
+
+
<math>
+
G_\alpha^{\gamma\delta}=\sum_\beta{ u_\beta J_{\alpha\beta}^{\gamma\delta}}
+
</math>
+
+
The overall uncertainty in the integral ''I'' defined in the beginning comes out to:
+
+
<math>
+
\sigma_I=\sqrt{\sigma^2_{MC} + \sigma^2_{fit}}
+
</math>