Changes

Jump to navigation Jump to search
Line 276: Line 276:  
Identification of <math>\epsilon_i</math> with <math>\epsilon_i'</math> and <math>\epsilon_f</math> with <math>\epsilon_f'</math> implies that only terms with <math>\epsilon_R=\epsilon_R'</math> survive in the sum over exchange quantum numbers.  The quadratic sum expression above for the differential cross section invokes a double-sum over all of the internal quantum numbers that have been introduced, plus the spins of the initial and final nucleons.  This sum is of the generic form
 
Identification of <math>\epsilon_i</math> with <math>\epsilon_i'</math> and <math>\epsilon_f</math> with <math>\epsilon_f'</math> implies that only terms with <math>\epsilon_R=\epsilon_R'</math> survive in the sum over exchange quantum numbers.  The quadratic sum expression above for the differential cross section invokes a double-sum over all of the internal quantum numbers that have been introduced, plus the spins of the initial and final nucleons.  This sum is of the generic form
 
:<math>
 
:<math>
\sum_{X,M_X,\cdots} \cdots \sum_{\epsilon_R\epsilon_i\epsilon_f}
+
\sum_{X,M_X,\cdots} \cdots \sum_{\epsilon_i\epsilon_f}
 +
|w_{\lambda_R \epsilon_R; \epsilon_i \epsilon_f}|^2
 +
</math>
 +
Note that the measured cross section only depends on the summed
 +
modulus squared of the ''w'' coefficients, and not on their
 +
individual values or phases.  Because of this, the sum over nucleon
 +
helicities can be dropped, and the ''w'' factors absorbed into
 +
the ''v'' coefficients by multiplying the ''v'' defined above with
 +
the square root of the above sum.
    
=== Mass dependence ===
 
=== Mass dependence ===

Navigation menu