Changes

Jump to navigation Jump to search
Line 194: Line 194:  
\left(\frac{q_\pi dm_\rho}{16\pi^3}\right)
 
\left(\frac{q_\pi dm_\rho}{16\pi^3}\right)
 
</math>
 
</math>
where <math>p_i\,</math> [<math>p_f\,</math>] is the target [recoil] nucleon momentum in the center of mass frame of the overall reaction.  The explicit kinematic factors from the initial-state flux and the density of final states for each of the decays are not factored into the T matrix so that we can make sure that it explicitly respects unitarity in each partial wave. In terms of the individual decay matrix elements introduced earlier, the T matrix element can be written as
+
where <math>p_i\,</math> [<math>p_f\,</math>] is the target [recoil] nucleon momentum in the center of mass frame of the overall reaction. In terms of the individual decay matrix elements introduced earlier, the T matrix element can be written as
    
:<math>
 
:<math>
 
T_{(f)(i)} =  
 
T_{(f)(i)} =  
T_{(\mathbf{q}_\pi \mathbf{q}_\rho \mathbf{q}_\omega \mathbf{q}_{b1} \mathbf{p}_f \lambda_f)
+
T_{(\mathbf{q}_\pi \mathbf{q}_\rho \mathbf{q}_\omega \mathbf{q}_{b1} \mathbf{p}_f \epsilon_f)
(\epsilon_\gamma \epsilon_R t \mathbf{p}_i \lambda_i)}=
+
(\mathbf{k}_\gamma \epsilon_\gamma \mathbf{p}_i \epsilon_i)}=
 
</math>
 
</math>
::::<math>
+
:::<math>
 
=\sum_{R,\lambda_R;\lambda_{b_1},\lambda_\omega,\lambda_\rho}
 
=\sum_{R,\lambda_R;\lambda_{b_1},\lambda_\omega,\lambda_\rho}
 
\langle \mathbf{q}_\pi 0 0; \mathbf{q}_\rho \lambda_\rho 0; \mathbf{q}_\omega \lambda_\omega 0; \mathbf{q}_{b1}\lambda_{b1} 0
 
\langle \mathbf{q}_\pi 0 0; \mathbf{q}_\rho \lambda_\rho 0; \mathbf{q}_\omega \lambda_\omega 0; \mathbf{q}_{b1}\lambda_{b1} 0
Line 207: Line 207:  
</math>
 
</math>
 
:::::::::<math> \times
 
:::::::::<math> \times
\langle J_R \lambda_R \epsilon_R;s,t; \mathbf{p_f}, \lambda_f | W | \mathbf{p_i}, \lambda_i\rangle
+
\langle J_R \lambda_R \epsilon_R;s,t; \mathbf{p_f}, \epsilon_f | W | \mathbf{p_i}, \epsilon_i\rangle
 
</math>
 
</math>
 +
 +
To obtain the second line in the above equation, we factorized the T operator into two vertex factors U and W, and inserted between them a sum over a complete set of intermediate exchanges ''R''. Polarizations of all particles are represented by the reflectivity quantum numbers <math>\epsilon</math>. For the nucleon, the reflectivity is a complete description of its spin state. For reactions involving higher spin baryons, it would need to be supplemented by an additional <math>|m|</math> quantum number.
 +
 +
    
=== Proton states and individual decay amplitudes ===
 
=== Proton states and individual decay amplitudes ===
Line 216: Line 220:  
:<math>
 
:<math>
 
\frac{d^8\sigma}{d\Omega_{b1}\,d\Omega_\omega\,d\Omega_\rho\,d\Omega_\pi} \propto
 
\frac{d^8\sigma}{d\Omega_{b1}\,d\Omega_\omega\,d\Omega_\rho\,d\Omega_\pi} \propto
\frac{1}{2}\sum_{\lambda_i \lambda_f \lambda_i' \lambda_f'}
+
\sum_{\epsilon_\gamma \epsilon_\gamma' \epsilon_i \epsilon_f \epsilon_i' \epsilon_f'}
\rho_{\lambda_i \lambda_i'}
+
\rho_{\epsilon_\gamma \epsilon_\gamma'}
\rho_{\lambda_f \lambda_f'}
+
\rho_{\epsilon_i \epsilon_i'}
T_{(\mathbf{q}_\pi \mathbf{q}_\rho \mathbf{q}_\omega \mathbf{q}_{b1} \lambda_f)
+
\delta_{\epsilon_f \epsilon_f'}
(\epsilon_\gamma \epsilon_R t \lambda_i)}
+
T_{(\mathbf{q}_\pi \mathbf{q}_\rho \mathbf{q}_\omega \mathbf{q}_{b1} \mathbf{p}_f \epsilon_f)
T^*_{(\mathbf{q}_\pi \mathbf{q}_\rho \mathbf{q}_\omega \mathbf{q}_{b1} \lambda_f')
+
(\mathbf{k}_\gamma \epsilon_\gamma \mathbf{p}_i \epsilon_i)}
(\epsilon_\gamma \epsilon_R t \lambda_i')}
+
T^*_{(\mathbf{q}_\pi \mathbf{q}_\rho \mathbf{q}_\omega \mathbf{q}_{b1} \mathbf{p}_f \epsilon_f')
 +
(\mathbf{k}_\gamma \epsilon_\gamma' \mathbf{p}_i \epsilon_i')}
 
</math>
 
</math>
   −
where density matrices <math>\rho</math> represent weights of proton's states in the summations. The unpolarized target presents an initial state with both helicities equally likely, resulting in  
+
where density matrices <math>\rho</math> represent the initial state particles' spin states. The unpolarized target presents an initial state with both reflectivities equally likely, resulting in  
<math>\rho_{\lambda_i \lambda_i'} \propto \rho_{\lambda_i \lambda_i'}</math>. The same property holds for <math>\rho_{\lambda_f \lambda_f'}</math> by definition of the summation over the final states. As a result, the term characterizing the target proton's transition with the emission of the Reggeon factorizes, allowing us to drop indices for the proton states in the T matrix:
+
<math>\rho_{\lambda_i \lambda_i'} = \frac{1}{2} \delta_{\lambda_i \lambda_i'}</math>. The same property holds for <math>\rho_{\lambda_f \lambda_f'}</math> by definition of the summation over the final states. As a result, the term characterizing the target proton's transition with the emission of the Reggeon factorizes, allowing us to drop indices for the proton states in the T matrix:
    
:<math>
 
:<math>
1,004

edits

Navigation menu