Changes

Jump to navigation Jump to search
Line 196: Line 196:  
:<math>
 
:<math>
 
T_{(f)(i)} =  
 
T_{(f)(i)} =  
T_{(\mathbf{q}_\pi \mathbf{q}_\rho \mathbf{q}_\omega \mathbf{q}_{b1})
+
T_{(\mathbf{q}_\pi \mathbf{q}_\rho \mathbf{q}_\omega \mathbf{q}_{b1} \lambda_f)
(\epsilon_\gamma \epsilon_R t)}=
+
(\epsilon_\gamma \epsilon_R t \lambda_i)}=
 
</math>
 
</math>
 
::::<math>
 
::::<math>
Line 208: Line 208:  
</math>
 
</math>
   −
The aggregate decay matrix element can be further broken up into a product of individual decay amplitudes,
+
An average over the target proton initial state will be necessary to compute the cross section section. Also, because the polarization of the recoiling proton cannot be measured, a sum over the proton final states must be done. This can be represented as
 +
 
 +
:<math>
 +
\frac{d^8\sigma}{d\Omega_{b1}\,d\Omega_\omega\,d\Omega_\rho\,d\Omega_\pi} \propto
 +
\frac{1}{2}\sum_{\lambda_i \lambda_f \lambda_i' \lambda_f'}
 +
\rho_{\lambda_i \lambda_i'}
 +
\rho_{\lambda_f \lambda_f'}
 +
T_{(\mathbf{q}_\pi \mathbf{q}_\rho \mathbf{q}_\omega \mathbf{q}_{b1} \lambda_f)
 +
(\epsilon_\gamma \epsilon_R t \lambda_i)}
 +
T^*_{(\mathbf{q}_\pi \mathbf{q}_\rho \mathbf{q}_\omega \mathbf{q}_{b1} \lambda_f')
 +
(\epsilon_\gamma \epsilon_R t \lambda_i')}
 +
</math>
 +
 
 +
where density matrices <math>\rho</math> represent weights of proton's states in the summations. The unpolarized target presents an initial state with both helicities equally likely, resulting in
 +
<math>\rho_{\lambda_i \lambda_i'} \propto \rho_{\lambda_i \lambda_i'}</math>. The same property holds for <math>\rho_{\lambda_f \lambda_f'}</math> by definition of the summation over the final states. As a result, the term characterizing the target proton's transition with the emission of the Reggeon factorizes, allowing us to drop indices for the proton states in the T matrix:
 +
 
 +
:<math>
 +
T_{(f)(i)} =
 +
T_{(\mathbf{q}_\pi \mathbf{q}_\rho \mathbf{q}_\omega \mathbf{q}_{b1})
 +
(\epsilon_\gamma \epsilon_R t)}
 +
</math>
 +
 
 +
 
 +
The remaining production and decay matrix elements can be further broken up into a product of individual decay amplitudes,
 
:<math>
 
:<math>
 
\langle \mathbf{q}_\pi 0 0; \mathbf{q}_\rho \lambda_\rho 0; \mathbf{q}_\omega \lambda_\omega 0; \mathbf{q}_{b1}\lambda_{b1} 0
 
\langle \mathbf{q}_\pi 0 0; \mathbf{q}_\rho \lambda_\rho 0; \mathbf{q}_\omega \lambda_\omega 0; \mathbf{q}_{b1}\lambda_{b1} 0
Line 267: Line 290:  
=== Summing over polarizations ===
 
=== Summing over polarizations ===
   −
The T Matrix, written in the photon reflectivity basis can be expanded in the photon's lab frame helicity basis
+
The T Matrix, written in the photon reflectivity basis can be expanded in the photon's lab frame helicity basis. Temporarily omitting indices not pertaining to the photon:
 
:<math>
 
:<math>
 
T_{\epsilon_\gamma} = \frac{\sqrt{-\epsilon_\gamma}}{2}  
 
T_{\epsilon_\gamma} = \frac{\sqrt{-\epsilon_\gamma}}{2}  
Line 295: Line 318:  
:::<math>
 
:::<math>
 
=\frac{|T_{-1}|^2 + |T_{+1}|^2}{2} +   
 
=\frac{|T_{-1}|^2 + |T_{+1}|^2}{2} +   
g\left[\mathrm{Re}(T_{+1}T_{-1}^*)\cos 2\alpha +
+
g\,\mathrm{Re}(T_{+1}T_{-1}^*)e^{2i\alpha}
\mathrm{Im}(T_{+1}T_{-1}^*)\sin 2\alpha)\right]
   
</math>
 
</math>
 
where ''g'' is the polarization fraction ranging from 1 (100% x-polarized) to 0 (unpolarized.)
 
where ''g'' is the polarization fraction ranging from 1 (100% x-polarized) to 0 (unpolarized.)
1,004

edits

Navigation menu