Changes

Jump to navigation Jump to search
no edit summary
Line 78: Line 78:     
Consider the t-channel production of a resonance from the photon and reggeon in the reflectivity basis, consisting of plane-wave states constructed to be eigenstates of the reflectivity operator.  This turns out in the case of the photon to correspond to the usual linear polarization basis |x> and |y>.  Let the x (y) linear polarization states be denoted as ε=- (ε=+).
 
Consider the t-channel production of a resonance from the photon and reggeon in the reflectivity basis, consisting of plane-wave states constructed to be eigenstates of the reflectivity operator.  This turns out in the case of the photon to correspond to the usual linear polarization basis |x> and |y>.  Let the x (y) linear polarization states be denoted as ε=- (ε=+).
:<math>|\varepsilon\rangle = \sqrt{\frac{-\varepsilon}{2}} \left( \left|1\; -1\right\rangle +\varepsilon \left|1\; +1\right\rangle \right)</math>
+
:<math>|\epsilon\rangle = \sqrt{\frac{-\epsilon}{2}} \left( \left|1\; -1\right\rangle +\epsilon \left|1\; +1\right\rangle \right)</math>
   −
:<math>\mathbb{R}|\varepsilon\rangle = \varepsilon |\varepsilon\rangle </math>
+
:<math>\mathbb{R}|\epsilon\rangle = \epsilon |\epsilon\rangle </math>
    
The strong interaction Hamiltonian respects reflectivity, so the production operator ''V'' should commute with ''R''.
 
The strong interaction Hamiltonian respects reflectivity, so the production operator ''V'' should commute with ''R''.
Line 112: Line 112:  
</math>
 
</math>
   −
where <math>\alpha=-\phi</math> - the rotation angle to return from production plane to lab xz plane.
+
where <math>\alpha=-\phi</math>: the rotation angle to return from production plane to lab xz plane. Thus, the production amplitude becomes:
 +
 
 +
:<math>
 +
\frac{1}{\sqrt{2}}
 +
\langle J_X m_X (\epsilon_\gamma \epsilon_R)|V|
 +
\sqrt{-\epsilon} \left( e^{-i\alpha}\left|1\; -1\right\rangle +
 +
\epsilon e^{i\alpha}\left|1\; +1\right\rangle \right) ;
 +
J_R \lambda_R \epsilon_R ; t, s; \Omega_0 \rangle
 +
</math>
 +
 
 +
 
    
== Decay of t-channel resonance X==
 
== Decay of t-channel resonance X==
Line 170: Line 180:  
</math>
 
</math>
    +
 +
== Assembly of the full amplitude ==
    
:<math>
 
:<math>
Line 183: Line 195:  
</math>
 
</math>
 
::<math>
 
::<math>
 +
\frac{1}{\sqrt{2}}
 
\langle J_X m_X (\epsilon_\gamma \epsilon_R)|V|
 
\langle J_X m_X (\epsilon_\gamma \epsilon_R)|V|
\epsilon_\gamma ; J_R \lambda_R \epsilon_R ; t, s; \Omega_0 \rangle
+
\sqrt{-\epsilon_\gamma} \left( e^{-i\alpha}\left|1\; -1\right\rangle +
 +
\epsilon_\gamma e^{i\alpha}\left|1\; +1\right\rangle \right) ;
 +
J_R \lambda_R \epsilon_R ; t, s; \Omega_0 \rangle
 +
</math>
 +
 
 +
The intensity would then require an incoherent summation of amplitudes with laboratory x and y polarization.
 +
:<math>
 +
\frac{1+f}{2}\left|\sum_{L_X} A_{L_X\;-1\;\epsilon_R}^{J_X}\right|^2 +
 +
\frac{1-f}{2}\left|\sum_{L_X} A_{L_X\;+1\;\epsilon_R}^{J_X}\right|^2
 
</math>
 
</math>
 +
 +
where f is the polarization fraction varying from 1, 100% x-polarized, to 0, unpolarized.
1,004

edits

Navigation menu