Changes

Jump to navigation Jump to search
Line 50: Line 50:  
<math>A(r')=\frac{-1}{2\pi}\int_{z=0} d^2r\left(\frac{A\left(\mathbf{r},t'-\frac{|\mathbf{r}-\mathbf{r}'|}{c}\right)}{|\mathbf{r}-\mathbf{r}'|^3}(-z')+\frac{1}{c}\frac{\dot{A}\left(\mathbf{r},t'-\frac{|\mathbf{r}-\mathbf{r}'|}{c}\right)}{|\mathbf{r}-\mathbf{r}'|^2}(-z')\right)</math><br><br>
 
<math>A(r')=\frac{-1}{2\pi}\int_{z=0} d^2r\left(\frac{A\left(\mathbf{r},t'-\frac{|\mathbf{r}-\mathbf{r}'|}{c}\right)}{|\mathbf{r}-\mathbf{r}'|^3}(-z')+\frac{1}{c}\frac{\dot{A}\left(\mathbf{r},t'-\frac{|\mathbf{r}-\mathbf{r}'|}{c}\right)}{|\mathbf{r}-\mathbf{r}'|^2}(-z')\right)</math><br><br>
 
In our case, we consider only those waves which drop off as <math>\frac{1}{r'} \quad</math>, so:<br><br>
 
In our case, we consider only those waves which drop off as <math>\frac{1}{r'} \quad</math>, so:<br><br>
<math>A(r')=\frac{-1}{2\pi}\int_{z=0} d^2r\left(\frac{1}{c}\frac{\dot{A}\left(\mathbf{r},t'-\frac{|\mathbf{r}-\mathbf{r}'|}{c}\right)}{|\mathbf{r}-\mathbf{r}'|^2}(z')\right)</math><br><br>
+
<math>A(r')=\frac{1}{2\pi}\int_{z=0} d^2r\left(\frac{1}{c}\frac{\dot{A}\left(\mathbf{r},t'-\frac{|\mathbf{r}-\mathbf{r}'|}{c}\right)}{|\mathbf{r}-\mathbf{r}'|^2}(z')\right)</math><br><br>
<math>A(r')=\frac{-z'}{2\pi c}\int_{z=0} d^2r\left(\frac{\dot{A}\left(\mathbf{r},t'-\frac{|\mathbf{r}-\mathbf{r}'|}{c}\right)}{|\mathbf{r}-\mathbf{r}'|^2}\right)</math><br><br>
+
<math>A(r')=\frac{z'}{2\pi c}\int_{z=0} d^2r\left(\frac{\dot{A}\left(\mathbf{r},t'-\frac{|\mathbf{r}-\mathbf{r}'|}{c}\right)}{|\mathbf{r}-\mathbf{r}'|^2}\right)</math><br><br>
 
In cylindrical coordinates, <math>d^2r=rdrd\phi \quad</math>.  Also, <math>\dot{A}\left(\mathbf{r},t'-\frac{|\mathbf{r}-\mathbf{r}'|}{c}\right)=\dot{A}(\mathbf{r},0)e^{-ik(t'c-|\mathbf{r}-\mathbf{r}'|)}</math>.  So:<br><br>
 
In cylindrical coordinates, <math>d^2r=rdrd\phi \quad</math>.  Also, <math>\dot{A}\left(\mathbf{r},t'-\frac{|\mathbf{r}-\mathbf{r}'|}{c}\right)=\dot{A}(\mathbf{r},0)e^{-ik(t'c-|\mathbf{r}-\mathbf{r}'|)}</math>.  So:<br><br>
<math>A(r')=\frac{-z'\dot{A_0}}{2\pi c}\int_{z=0} rdrd\phi \frac{e^{-ik(t'c-|\mathbf{r}-\mathbf{r}'|)}}{|\mathbf{r}-\mathbf{r}'|^2}</math><br><br>
+
<math>A(r')=\frac{z'\dot{A_0}}{2\pi c}\int_{z=0} rdrd\phi \frac{e^{-ik(t'c-|\mathbf{r}-\mathbf{r}'|)}}{|\mathbf{r}-\mathbf{r}'|^2}</math><br><br>
 +
== Special Case ==
 
Picture an opaque screen with a circular aperture of radius a.<br><br>  
 
Picture an opaque screen with a circular aperture of radius a.<br><br>  
 
Let<math>\mathcal{J}(r')=\int_0^a rdr\int_0^{2\pi} d\phi \frac{e^{ik|\mathbf{r}-\mathbf{r}'|}}{|\mathbf{r}-\mathbf{r}'|}</math><br><br>
 
Let<math>\mathcal{J}(r')=\int_0^a rdr\int_0^{2\pi} d\phi \frac{e^{ik|\mathbf{r}-\mathbf{r}'|}}{|\mathbf{r}-\mathbf{r}'|}</math><br><br>
Then <math>A(r')=\frac{-z'\dot{A_0}}{2\pi c}e^{-ikct'}\mathcal{J}(r')</math>
+
Then <math>A(r')=\frac{z'\dot{A_0}}{2\pi c}e^{-ikct'}\mathcal{J}(r')</math><br><br>
<math>|\mathbf{r}-\mathbf{r}'|=\sqrt{(x-x')^2+(y-y')^2+z'^2}=\sqrt{r^2+r'^2+2r\rho^2cos\phi}</math><br><br>
+
<math>|\mathbf{r}-\mathbf{r}'|=\sqrt{(x-x')^2+(y-y')^2+z'^2}=\sqrt{r^2+r'^2+2r\rho^2\cos\phi}</math><br><br>
<math>=r'-\frac{2r\rho'cos\phi}{2r'}, \frac{\rho'}{r'}=sin\theta'</math><br><br>
+
<math>=r'-\frac{2r\rho'\cos\phi}{2r'}, \frac{\rho'}{r'}=\sin\theta'</math><br><br>
<math>\frac{1}{|\mathbf{r}-\mathbf{r}'|^2} \approx \frac{1}{r'^2}\left(1+\frac{2rsin\theta'cos\phi}{r'}\right)</math>
+
<math>\frac{1}{|\mathbf{r}-\mathbf{r}'|^2} \approx \frac{1}{r'^2}\left(1+\frac{2r\sin\theta'\cos\phi}{r'}\right)</math>
196

edits

Navigation menu