Line 83: |
Line 83: |
| Once we were satisfied that the amplifier/summing circuit performed as required, I shifted work from the backplane to the amplifier board. Around the same time, I began working on a poster to present my work at the Frontiers in Undergraduate Research Exhibition held during Open House Weekend here at UConn. If you’re interested in my poster, check it out here. | | Once we were satisfied that the amplifier/summing circuit performed as required, I shifted work from the backplane to the amplifier board. Around the same time, I began working on a poster to present my work at the Frontiers in Undergraduate Research Exhibition held during Open House Weekend here at UConn. If you’re interested in my poster, check it out here. |
| | | |
− | To start the amplifier/summing circuit project, I searched high and low for information about how to handle multi-channel designs in Altium. Not surprisingly, the first Google result on the query “multichannel design Altium” had everything I was missing during the fall when I was trying to lay out the original amplifier circuit. Using my new knowledge of Altium’s multichannel capabilities, I captured Igor’s new design into the schematics editor of Altium Designer. With proper nested schematic sheets, the entire 30 channel amplifier/6 channel summer design was compressed into just 4 schematic sheets, vs. the ~40 or so that would have been required had I laid out the complete schematics of the old design. | + | [[Image:Amplifier-Summer-Laid-out.gif|thumb|A prototype layout of 5 amplifier channels and a summing circuit. Actual size is ~1.6" tall. Areas in green represent problems to be resolved over summer 2009. A prototype amplifier with no green spots has been designed and will be replicated to this design soon.]] To start the amplifier/summing circuit project, I searched high and low for information about how to handle multi-channel designs in Altium. Not surprisingly, the first Google result on the query “multichannel design Altium” had everything I was missing during the fall when I was trying to lay out the original amplifier circuit. Using my new knowledge of Altium’s multichannel capabilities, I captured Igor’s new design into the schematics editor of Altium Designer. With proper nested schematic sheets, the entire 30 channel amplifier/6 channel summer design was compressed into just 4 schematic sheets, vs. the ~40 or so that would have been required had I laid out the complete schematics of the old design. |
| + | |
| I spent about a week and a half trying to figure out how to handle nesting independent nets from a repeated subsheet into another repeated subsheet which also produces independent nets from the nets of the first sheet. This sounds somewhat complicated, and I suppose perhaps it is a somewhat unique situation, since none of the ~5 sample multichannel projects included with Altium had such a construction in them. Basically, each summing circuit has five amplifier subcircuits, each of which puts out its own signal independent of the other four. From the perspective of the entire board, there are 6 summers, each of which has five independent signals coming from the amplifiers, and one summed signal. Determining how to get Altium to realize the proper connections from each individual amplifier, through that amplifier’s summer, to the main schematic was a complicated mess of naming conventions, but eventually I was able to make Altium reflect all of the appropriate connections in the PCB view. Though there are a few net naming issues still to be resolved, this problem has mostly been ironed out. | | I spent about a week and a half trying to figure out how to handle nesting independent nets from a repeated subsheet into another repeated subsheet which also produces independent nets from the nets of the first sheet. This sounds somewhat complicated, and I suppose perhaps it is a somewhat unique situation, since none of the ~5 sample multichannel projects included with Altium had such a construction in them. Basically, each summing circuit has five amplifier subcircuits, each of which puts out its own signal independent of the other four. From the perspective of the entire board, there are 6 summers, each of which has five independent signals coming from the amplifiers, and one summed signal. Determining how to get Altium to realize the proper connections from each individual amplifier, through that amplifier’s summer, to the main schematic was a complicated mess of naming conventions, but eventually I was able to make Altium reflect all of the appropriate connections in the PCB view. Though there are a few net naming issues still to be resolved, this problem has mostly been ironed out. |
| | | |
| The final few weeks of the semester were spent laying out components in the PCB view of Altium. As of right now, a compact design for an amplifier measuring 0.183”x~1.3” has been completed. Making use of 0201 size components, this amplifier is approximately .2” shorter than the old design, despite incorporating an extra transistor. The amplifier design features an isolating ground trace running the length of the amplifier to prevent crosstalk between channels. A prototype layout of the summing circuit has also been completed, though some layout issues there remain to be resolved over the summer. | | The final few weeks of the semester were spent laying out components in the PCB view of Altium. As of right now, a compact design for an amplifier measuring 0.183”x~1.3” has been completed. Making use of 0201 size components, this amplifier is approximately .2” shorter than the old design, despite incorporating an extra transistor. The amplifier design features an isolating ground trace running the length of the amplifier to prevent crosstalk between channels. A prototype layout of the summing circuit has also been completed, though some layout issues there remain to be resolved over the summer. |