Changes

Jump to navigation Jump to search
no edit summary
The following presents a more concrete description of components necessary to implement the amplifier design discussed in the [[SiPM Amplifier Optimization]] section.


[[Image:AmpVis_v6_DC_labels.png|frame|center|Amplifier and summing circuit component designations.]]


{| align="center" cellpadding="5" cellspacing="10" style="text-align:left"
|-valign="top"
|
{|border="0" cellpadding="2" cellspacing="0" style="text-align:center; font-family:times"
|-
! colspan="3" style="background:#ffdead; text-align:left" | Resistors (amp)
|-
| R<sub>1</sub> || 100 || k&Omega;
|-
| R<sub>2</sub> || 10 || k&Omega;
|-
| R<sub>0</sub> || 560 || &Omega;
|-
| R<sub>3</sub> || 1000 || &Omega;
|-
| R<sub>4</sub> || 330 || &Omega;
|-
| R<sub>5</sub> || 470 || &Omega;
|-
| R<sub>6</sub> || 50 || &Omega;
|-
| R<sub>7</sub> || 1360 || &Omega;
|-
| R<sub>9</sub> || 1000 || &Omega;
|}
||
{|border="0" cellpadding="2" cellspacing="0" style="text-align:center; font-family:times"
|-
! colspan="3" style="background:#ffdead; text-align:left" | Resistors (sum)
|-
| R<sub>a</sub> || 120 || &Omega;
|-
| R<sub>b</sub> || 1220 || &Omega;
|-
| R<sub>c</sub> || 100 || &Omega;
|-
| R<sub>d</sub> || 82 || &Omega;
|-
| R<sub>e</sub> || 3300 || &Omega;
|-
| R<sub>f</sub> || 680 || &Omega;
|-
| R<sub>g</sub> || 560 || &Omega;
|-
| R<sub>h</sub> || 180 || &Omega;
|-
| R<sub>i</sub> || 2000 || &Omega;
|-
| R<sub>j</sub> || 392 || &Omega;
|-
| R<sub>E</sub> || 700 || &Omega;
|}
||
{| border="0" cellpadding="2" cellspacing="0" style="text-align:center; font-family:times"
! colspan="3" style="background:#ffdead; text-align:left" | Capacitors
|-
| C<sub>1</sub> || 10 || nF
|-
| C<sub>2</sub> || 10 || nF
|-
| C<sub>3</sub> || 10 || nF
|-
| C<sub>4</sub> || 1 || nF
|-
| C<sub>5</sub> || 10 || nF
|-
| C<sub>a</sub> || 1 || nF
|-
| C<sub>c</sub> || 10 || nF
|-
| C<sub>d</sub> || 1 || nF
|-
| C<sub>h</sub> || 10 || nF
|-
| C<sub>C</sub> || 1 || nF
|}
||
{| border="0" cellpadding="2" cellspacing="0" style="text-align:center; font-family:times"
! colspan="3" style="background:#ffdead; text-align:left" | Transistors
|-
! style="font-weight:bold" | Num. || Label || Polarity
|-
| 1 || j || NPN
|-
| 2 || k || PNP
|-
| 3 || l || PNP
|-
| 4 || m || NPN
|-
| 5 || n || NPN
|-
| 6 || o || PNP
|-
| 7 || p || PNP
|-
| 8 || q || NPN
|}
||
{| border="0" cellpadding="4" cellspacing="0" style="text-align:left; font-family:times"
! colspan="3" style="background:#ffdead; text-align:left" | Transistor Parts
|-
! style="font-weight:bold" | Type || Component
|-
| BJT NPN || Infineon BFR92P
|-
| BJT PNP || NXP (Philips) BFT92W
|-
| MOSFET || NXP (Philips) BF1108(R)
|}

{| border="0" cellpadding="2" cellspacing="0" style="text-align:left; font-family:times"
! colspan="3" style="background:#ffdead; text-align:left" | Bypass Components
|-
! style="font-weight:bold" | Name || Value
|-
| C<sub>Bi</sub> || 10&nbsp;nF
|-
| R<sub>Bi</sub> || 154&nbsp;&Omega;
|-
| R<sub>G</sub> || 18&nbsp;&Omega;
|}

|}

== Bypass Circuits ==

The passive components used to bypass high frequency noise to clean up DC levels were picked as follows. The 10&nbsp;nF capacitor frequently used in the circuit was deemed a good choice - high enough without raising concerns of introducing much inductance. This was also Photonique's choice for bypass capacitors in their prototype amplifier. The resistance on the bases of relevant transistors should be same or lower than that of the bench prototype (200&nbsp;&omega). 154&nbsp;&Omega; is sufficient, leading to a low pass filter with 3&nbsp;dB point of 100&nbsp;kHz. Frequencies below this point are well out of the amplifier's band (see [[SiPM Amplifier Signal Analysis]].

The bypass circuit for the gate of the MOSFET switch takes more care. Gate resistance forms a voltage divider with resistance on the Source leg. Given the low value of R<sub>d</sub>: 82&nbsp;&Omega;, and the MOSFET specification of V<sub>GS</sub>&nbsp;=&nbsp;-4 as the maximum pinch-off value, R<sub>G</sub> of 18&nbsp;&Omega; is a good choice. The resulting V<sub>GS</sub> when the controlling voltage is pulled down ground is -4.1&nbsp;V.
1,004

edits

Navigation menu