Electrons leaving the diamond radiator are deflected by a magnetic field into an array of scintillating fibres, producing photons. Wave guides carry these photons to SiPMs (silicon photomultipliers) mounted on the analog circuit board. The analog board contains transimpedance amplifier and summing circuitry to output the signal via LEMO for further analysis. The signals output from the analog board, in particular, allow for the determination of the energy of the electrons.
+
Electrons leaving the diamond radiator are deflected by a magnetic field into an array of scintillating fibres, producing photons. Wave guides carry these photons to SiPMs (silicon photomultipliers) mounted on the analog circuit board. The analog board contains transimpedance amplifiers and summing circuitry to condition the signals for digitization.
−
The sensitivity of the SiPMs and the gain of the amplifiers on the analog board are controlled both by the power supply VCC and bias voltages supplied from the digital board. The digital board receives commands from a computer via ethernet, and uses a 32-channel DAC to output appropriate bias voltages to the SiPMs on the analog board. The digital and analog boards are connected by means of a backplane, which is also responsible for providing power and grounds to both boards.
+
The sensitivity of the SiPMs and the gain of the amplifiers on the analog board are controlled both by the power supply VCC and bias voltages supplied from the digital board. The digital board receives commands from a computer via ethernet, and uses a 32-channel DAC to output appropriate bias voltages to the SiPMs on the analog board. The digital and analog boards are connected by means of a backplane, which is also responsible for providing power and grounds to both boards.