The standard technology for such detectors, originally developed for atomic and nuclear physics experiments, is based on the photomultiplier vacuum tube. Particle physics experiments have relied on photomultiplier tubes for over 40 years. Ever since the invention of the transistor, efforts have been made to create semiconductor-based photon detectors, but certain drawbacks have limited their use to a few niche applications. Recently, however, progress has been made toward the goal of creating silicon-based detectors with single-photon sensitivity that can operate at room temperature. These devices are called silicon photomultipliers. | The standard technology for such detectors, originally developed for atomic and nuclear physics experiments, is based on the photomultiplier vacuum tube. Particle physics experiments have relied on photomultiplier tubes for over 40 years. Ever since the invention of the transistor, efforts have been made to create semiconductor-based photon detectors, but certain drawbacks have limited their use to a few niche applications. Recently, however, progress has been made toward the goal of creating silicon-based detectors with single-photon sensitivity that can operate at room temperature. These devices are called silicon photomultipliers. |