Line 11: |
Line 11: |
| <table> | | <table> |
| <tr> | | <tr> |
− | <td></td> | + | <td>ParSA Scheduling Class</td> |
− | <td></td> | + | <td>Warming Up</td> |
− | <td></td> | + | <td>Equilibrium</td> |
− | <td></td> | + | <td>Cooling Down</td> |
− | <td></td> | + | <td>Frozen</td> |
| </tr> | | </tr> |
| <tr> | | <tr> |
− | <td></td> | + | <td>SA_EasyScheduler</td> |
− | <td></td> | + | <td>user defined temperature</td> |
− | <td></td> | + | <td>user defined chain length</td> |
− | <td></td> | + | <td><math>T_n=\alpha T_{n-1}</math></td> |
− | <td></td> | + | <td>acceptance ratio less than χ<sub>min</sub> after a given number ''k'' of temperature steps</td> |
| </tr> | | </tr> |
| <tr> | | <tr> |
− | <td></td> | + | <td>SA_AartsScheduler</td> |
− | <td></td> | + | <td><math>T=\bar{\Delta C^{(+)}}\left(\ln{\frac{m_2}{m_2\chi_0-(1-\chi_0)m_1}}\right)^{-1}</math></td> |
− | <td></td> | + | <td>"length of a subchain with constant temperature is set to the number local neighborhood"</td> |
− | <td></td> | + | <td><math>T_n=T_{n-1}\left(1+\frac{\ln(1+\delta)T_{n-1}}{3\sigma(T_{n-1)}}\right)^{-1}</math></td> |
− | <td></td> | + | <td>terminates when the smoothed mean value of the derivative of the cost function is less than ε</td> |
| </tr> | | </tr> |
| <tr> | | <tr> |
− | <td></td> | + | <td>SA_MIRScheduler</td> |
− | <td></td> | + | <td>(similar to SA_AartsScheduler)</td> |
− | <td></td> | + | <td><math>T_{start}=-\frac{\Delta C_{max}}{\ln \chi_0}</math></td> |
− | <td></td> | + | <td><math>T_n=\alpha T_{n-1}</math></td> |
− | <td></td> | + | <td><math>T_{end}=-\frac{\Delta C_{min}}{\ln \chi_0}</math></td> |
| </tr> | | </tr> |
| </table> | | </table> |
− | *'''SA_EasyScheduler'''
| |
− | -Warming Up
| |
− | *user defined temperature
| |
− | -Equilibrium
| |
− | *user defined chain length
| |
− | -Cooling
| |
− | *<math>T_n=\alpha T_{n-1}</math>
| |
− | -Frozen
| |
− | *acceptance ratio less than χ<sub>min</sub> after a given number ''k'' of temperature steps
| |
− | *'''SA_AartsScheduler'''
| |
− | [[Image:Temp_delta.jpg|thumb|A rough portrayal of the dependence of the next temperature step as a function of the delta parameter and the previous temperature's value]]
| |
− | -Warming Up
| |
− | *<math>T=\bar{\Delta C^{(+)}}\left(\ln{\frac{m_2}{m_2\chi_0-(1-\chi_0)m_1}}\right)^{-1}</math>
| |
− | -Equilibrium
| |
− | *"length of a subchain with constant temperature is set to the number local neighborhood"
| |
− | -Cooling
| |
− | *<math>T_n=T_{n-1}\left(1+\frac{\ln(1+\delta)T_{n-1}}{3\sigma(T_{n-1)}}\right)^{-1}</math>
| |
− | -Frozen
| |
− | *terminates when the smoothed mean value of the derivative of the cost function is less than ε.
| |
− | *'''SA_MIRScheduler'''
| |
− | -Warming Up
| |
− | *similar to SA_AartsScheduler
| |
− | *<math>T_{start}=-\frac{\Delta C_{max}}{\ln \chi_0}</math>
| |
− | *<math>T_{end}=-\frac{\Delta C_{min}}{\ln \chi_0}</math>
| |
− | -Equilibrium
| |
− | *set by T<sub>start</sub>
| |
− | -Cooling
| |
− | *similar to SA_EasyScheduler
| |
− | *<math>T_n=\alpha T_{n-1}</math>
| |
− | -Frozen
| |
− | *set by T<sub>end</sub>
| |
| | | |
| ==Difficulty of the problem== | | ==Difficulty of the problem== |