Changes

Jump to navigation Jump to search
Line 11: Line 11:  
<table>
 
<table>
 
<tr>
 
<tr>
<td></td>
+
<td>ParSA Scheduling Class</td>
<td></td>
+
<td>Warming Up</td>
<td></td>
+
<td>Equilibrium</td>
<td></td>
+
<td>Cooling Down</td>
<td></td>
+
<td>Frozen</td>
 
</tr>
 
</tr>
 
<tr>
 
<tr>
<td></td>
+
<td>SA_EasyScheduler</td>
<td></td>
+
<td>user defined temperature</td>
<td></td>
+
<td>user defined chain length</td>
<td></td>
+
<td><math>T_n=\alpha T_{n-1}</math></td>
<td></td>
+
<td>acceptance ratio less than &chi;<sub>min</sub> after a given number ''k'' of temperature steps</td>
 
</tr>
 
</tr>
 
<tr>
 
<tr>
<td></td>
+
<td>SA_AartsScheduler</td>
<td></td>
+
<td><math>T=\bar{\Delta C^{(+)}}\left(\ln{\frac{m_2}{m_2\chi_0-(1-\chi_0)m_1}}\right)^{-1}</math></td>
<td></td>
+
<td>"length of a subchain with constant temperature is set to the number local neighborhood"</td>
<td></td>
+
<td><math>T_n=T_{n-1}\left(1+\frac{\ln(1+\delta)T_{n-1}}{3\sigma(T_{n-1)}}\right)^{-1}</math></td>
<td></td>
+
<td>terminates when the smoothed mean value of the derivative of the cost function is less than &epsilon;</td>
 
</tr>
 
</tr>
 
<tr>
 
<tr>
<td></td>
+
<td>SA_MIRScheduler</td>
<td></td>
+
<td>(similar to SA_AartsScheduler)</td>
<td></td>
+
<td><math>T_{start}=-\frac{\Delta C_{max}}{\ln \chi_0}</math></td>
<td></td>
+
<td><math>T_n=\alpha T_{n-1}</math></td>
<td></td>
+
<td><math>T_{end}=-\frac{\Delta C_{min}}{\ln \chi_0}</math></td>
 
</tr>
 
</tr>
 
</table>
 
</table>
*'''SA_EasyScheduler'''
  −
  -Warming Up
  −
    *user defined temperature
  −
  -Equilibrium
  −
    *user defined chain length
  −
  -Cooling
  −
    *<math>T_n=\alpha T_{n-1}</math>
  −
  -Frozen
  −
    *acceptance ratio less than &chi;<sub>min</sub> after a given number ''k'' of temperature steps
  −
*'''SA_AartsScheduler'''
  −
[[Image:Temp_delta.jpg|thumb|A rough portrayal of the dependence of the next temperature step as a function of the delta parameter and the previous temperature's value]]
  −
  -Warming Up
  −
    *<math>T=\bar{\Delta C^{(+)}}\left(\ln{\frac{m_2}{m_2\chi_0-(1-\chi_0)m_1}}\right)^{-1}</math>
  −
  -Equilibrium
  −
    *"length of a subchain with constant temperature is set to the number local neighborhood"
  −
  -Cooling
  −
    *<math>T_n=T_{n-1}\left(1+\frac{\ln(1+\delta)T_{n-1}}{3\sigma(T_{n-1)}}\right)^{-1}</math>
  −
  -Frozen
  −
    *terminates when the smoothed mean value of the derivative of the cost function is less than &epsilon;.
  −
*'''SA_MIRScheduler'''
  −
  -Warming Up
  −
    *similar to SA_AartsScheduler
  −
    *<math>T_{start}=-\frac{\Delta C_{max}}{\ln \chi_0}</math>
  −
    *<math>T_{end}=-\frac{\Delta C_{min}}{\ln \chi_0}</math>
  −
  -Equilibrium
  −
    *set by T<sub>start</sub>
  −
  -Cooling
  −
    *similar to SA_EasyScheduler
  −
    *<math>T_n=\alpha T_{n-1}</math>
  −
  -Frozen
  −
    *set by T<sub>end</sub>
      
==Difficulty of the problem==
 
==Difficulty of the problem==
1,359

edits

Navigation menu