Changes

Jump to navigation Jump to search
Line 3: Line 3:  
These are the Maxwell's Equations we will be using to solve for regions "I" and "II" in our approximation of the Michelson interferometer.
 
These are the Maxwell's Equations we will be using to solve for regions "I" and "II" in our approximation of the Michelson interferometer.
   −
Gauss' Law:
+
{|align=center
 
+
|Gauss' Law:
<math>\boldsymbol{\nabla \cdot E} = 0 </math>  
+
|<math>\boldsymbol{\nabla \cdot E} = 0 </math>  
 
+
|Gauss' Law for Magnetism:
Gauss' Law for Magnetism:
+
|<math>\boldsymbol{\nabla \cdot B} = 0</math>  
 
+
|-
<math>\boldsymbol{\nabla \cdot B} = 0</math>  
+
|Faradays's Law:
 
+
|<math>\boldsymbol{\nabla \times E} + \frac{\partial \boldsymbol{B}}{\partial t}= 0</math>  
Faradays's Law:
+
|Ampere's Law:
 
+
|<math>\boldsymbol{\nabla \times B} - \mu_0\epsilon_0\frac{\partial \boldsymbol{E}}{\partial t}= 0 </math>
<math>\boldsymbol{\nabla \times E} + \frac{\partial \boldsymbol{B}}{\partial t}= 0</math>  
+
|}
 
  −
Ampere's Law:
  −
 
  −
<math>\boldsymbol{\nabla \times B} - \mu_0\epsilon_0\frac{\partial \boldsymbol{E}}{\partial t}= 0 </math>
      
== In the presence of charges and dielectric media ==
 
== In the presence of charges and dielectric media ==

Navigation menu