Changes

Jump to navigation Jump to search
no edit summary
Line 1: Line 1:  
== In Free Space ==
 
== In Free Space ==
   −
These are the Maxwell's Equations we will be using to solve for "region I" in our approximation of the Michelson interferometer.
+
These are the Maxwell's Equations we will be using to solve for regions "I" and "II" in our approximation of the Michelson interferometer.
    
Gauss' Law:
 
Gauss' Law:
 
{| class="wikitable" style="margin: 1em auto 1em auto"
 
{| class="wikitable" style="margin: 1em auto 1em auto"
|<math>\boldsymbol{\nabla \cdot E} = 0 </math>|align="right" width="200"| (1)
+
|<math>\boldsymbol{\nabla \cdot E} = 0 </math>|align="right" width="200"| (1) |}
|}
      
Gauss' Law for Magnetism:
 
Gauss' Law for Magnetism:
    
{| class="wikitable" style="margin: 1em auto 1em auto"
 
{| class="wikitable" style="margin: 1em auto 1em auto"
|<math>\boldsymbol{\nabla \cdot B} = 0</math>|align="right" width="200"| (2)
+
|<math>\boldsymbol{\nabla \cdot B} = 0</math>|align="right" width="200"| (2)|}
|}
      
Faradays's Law:
 
Faradays's Law:
    
{| class="wikitable" style="margin: 1em auto 1em auto"
 
{| class="wikitable" style="margin: 1em auto 1em auto"
|<math>\boldsymbol{\nabla \times E} + \frac{\partial \boldsymbol{B}}{\partial t}= 0</math>|align="right" width="200"| (3)
+
|<math>\boldsymbol{\nabla \times E} + \frac{\partial \boldsymbol{B}}{\partial t}= 0</math>|align="right" width="200"| (3) |}
|}
      
Ampere's Law:
 
Ampere's Law:
    
{| class="wikitable" style="margin: 1em auto 1em auto"
 
{| class="wikitable" style="margin: 1em auto 1em auto"
|<math>\boldsymbol{\nabla \times B} - \mu_0\epsilon_0\frac{\partial \boldsymbol{E}}{\partial t}= 0 </math>|align="right" width="200"| (4)
+
|<math>\boldsymbol{\nabla \times B} - \mu_0\epsilon_0\frac{\partial \boldsymbol{E}}{\partial t}= 0 </math>|align="right" width="200"| (4)|}
|}
+
 
    
{| class="wikitable" style="margin: 1em auto 1em auto"
 
{| class="wikitable" style="margin: 1em auto 1em auto"
1,745

edits

Navigation menu