Changes

Jump to navigation Jump to search
Line 31: Line 31:  
Figure 1 illustrates the arrangement of the ablation set up. A series of quartz plates are positioned immediately in front of the laser aperture so that a small sample of the beam (<5%) is reflected onto two separate energy meters labeled energy meter 1 and energy meter 2. Energy meter 1 is part of the laser’s on board energy feedback system which is used to control the output energy and stabilize the pulse-to-pulse variation to within 5%. Energy meter 2 measures each laser pulse incident on the diamond target during the ablation process.  
 
Figure 1 illustrates the arrangement of the ablation set up. A series of quartz plates are positioned immediately in front of the laser aperture so that a small sample of the beam (<5%) is reflected onto two separate energy meters labeled energy meter 1 and energy meter 2. Energy meter 1 is part of the laser’s on board energy feedback system which is used to control the output energy and stabilize the pulse-to-pulse variation to within 5%. Energy meter 2 measures each laser pulse incident on the diamond target during the ablation process.  
   −
[[Image:spherabs.png|right|thumb|200px|Zygo image of pulses made on diamond after passing through a single focusing lens.]] [[Image:goodfocus.png|right|thumb|200px|Zygo image of pulses made on diamond after passing through the three lens system.]]
+
[[Image:spherabs.png|right|thumb|400px|Zygo image of pulses made on diamond after passing through a single focusing lens.]] [[Image:goodfocus.png|right|thumb|400px|Zygo image of pulses made on diamond after passing through the three lens system.]]
    
Figure 5a shows two columns of broad asymmetric patterns in a diamond sample cut using only a single lens for a varying number of laser pulses. If the focal spot that created these patterns was rastered over an entire diamond it would result in a radiator with large surface variations rendering it unusable for GlueX.
 
Figure 5a shows two columns of broad asymmetric patterns in a diamond sample cut using only a single lens for a varying number of laser pulses. If the focal spot that created these patterns was rastered over an entire diamond it would result in a radiator with large surface variations rendering it unusable for GlueX.
Line 38: Line 38:  
The laser beam then passes through a series of lenses as shown in Figure 4. Lenses L1 and L2 are positioned with overlapping focal lengths so that the output of L2 is a highly parallel, expanded beam. This was to remove large spherical aberrations due to imperfections in the quartz lenses.
 
The laser beam then passes through a series of lenses as shown in Figure 4. Lenses L1 and L2 are positioned with overlapping focal lengths so that the output of L2 is a highly parallel, expanded beam. This was to remove large spherical aberrations due to imperfections in the quartz lenses.
 
Figure 5a shows two columns of broad asymmetric patterns in a diamond sample cut using only a single lens for a varying number of laser pulses. If the focal spot that created these patterns was rastered over an entire diamond it would result in a radiator with large surface variations rendering it unusable for GlueX. The focus of the laser defines the cutting tool with which the diamond is shaped. An ill-defined focused will ablate non-uniformly as the diamond is rastered across it making it extremely difficult to cut uniformly to 20 µm thickness without cracking the thin diamond membrane. The geometry of the focus also determines the fluence (laser energy per cm2 ) incident on the diamond surface. A tightly focused beam spot increases the available fluence, increasing the rate of ablation. It is therefore very important to measure the waist of the beam after L3 in the three lens system.
 
Figure 5a shows two columns of broad asymmetric patterns in a diamond sample cut using only a single lens for a varying number of laser pulses. If the focal spot that created these patterns was rastered over an entire diamond it would result in a radiator with large surface variations rendering it unusable for GlueX. The focus of the laser defines the cutting tool with which the diamond is shaped. An ill-defined focused will ablate non-uniformly as the diamond is rastered across it making it extremely difficult to cut uniformly to 20 µm thickness without cracking the thin diamond membrane. The geometry of the focus also determines the fluence (laser energy per cm2 ) incident on the diamond surface. A tightly focused beam spot increases the available fluence, increasing the rate of ablation. It is therefore very important to measure the waist of the beam after L3 in the three lens system.
  −
  −
  −
  −
  −
  −
  −
  −
  −
  −
  −
  −
  −
  −
  −
  −
  −
  −
  −
  −
  −
  −
  −
  −
  −
      
==Focal Spot Characterization==
 
==Focal Spot Characterization==
581

edits

Navigation menu