Changes

Jump to navigation Jump to search
m
no edit summary
Line 31: Line 31:  
The combination of these devices have been found easy to control: the driver has simple direction and step resolution selection pins and uses TTL pulses as step commands. The shaft of the motor, which comes smooth (as in the adjacent picture) when bought from distributors. However, it tested to be more than soft enough to machine a flat into it. A cylindrical "sleeve" with threaded outer surface may be inserted over it and tightened against the flat a small headless screw.
 
The combination of these devices have been found easy to control: the driver has simple direction and step resolution selection pins and uses TTL pulses as step commands. The shaft of the motor, which comes smooth (as in the adjacent picture) when bought from distributors. However, it tested to be more than soft enough to machine a flat into it. A cylindrical "sleeve" with threaded outer surface may be inserted over it and tightened against the flat a small headless screw.
    +
 +
== Adjustment to the Electron Crossing Angle ===
 +
 +
A simple dynamic parallel railing system was devised to allow flexibility for the electron crossing angle. In the range of useful photon energies (3-12 GeV) the crossing angle (measured from the focal plane) is calculated to change from 8 to 60 degrees. The adjacent figure illustrates a set of "rails" kept apart by beams parallel to electron trajectory. As shown, this allows for properly positioned mounting sites for both ends of the fiber modules.
     
1,004

edits

Navigation menu