Changes

Jump to navigation Jump to search
no edit summary
Line 13: Line 13:  
[[File:S1 Ave Spread.png|400px|thumb|right|Histogram C: S1 Average Width Spread.]]  [[File:A2 Ave Spread.png|400px|thumb|right|Histogram E: A2 Average Width Spread.]] [[File:S2 Ave Spread.png|450px|thumb|left|Histogram D: S2 Average Width Spread.]]
 
[[File:S1 Ave Spread.png|400px|thumb|right|Histogram C: S1 Average Width Spread.]]  [[File:A2 Ave Spread.png|400px|thumb|right|Histogram E: A2 Average Width Spread.]] [[File:S2 Ave Spread.png|450px|thumb|left|Histogram D: S2 Average Width Spread.]]
 
Every fiber was cut from one of four spools delivered by the manufacturer. An analysis of the widths of fibers from each spool was performed to determine if a significant difference in quality of fiber exists between them. The spools are named "A1", "A2", "S1", and "S2", where only six fibers were cut from spool A1 so it was omitted from the analysis due to a lack of representative data. As can be seen from histograms C through E, the average widths are within .025mm of each other indicating a consistent fiber size across spools. The standard deviation of spool S2 is about one and a half times as large as the other two showing substantially more change in the average width along fibers. This difference is still only on the order .01mm so no spool can be said to be significantly better or worse than the rest.
 
Every fiber was cut from one of four spools delivered by the manufacturer. An analysis of the widths of fibers from each spool was performed to determine if a significant difference in quality of fiber exists between them. The spools are named "A1", "A2", "S1", and "S2", where only six fibers were cut from spool A1 so it was omitted from the analysis due to a lack of representative data. As can be seen from histograms C through E, the average widths are within .025mm of each other indicating a consistent fiber size across spools. The standard deviation of spool S2 is about one and a half times as large as the other two showing substantially more change in the average width along fibers. This difference is still only on the order .01mm so no spool can be said to be significantly better or worse than the rest.
<br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br>
+
<br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br>
 
==Fuse Widths==
 
==Fuse Widths==
 
Fuse widths are the maximum thickness of a fiber at the fuse site between the scintillating fiber and the upstream end of the waveguide. The fusing process typically creates a slight bulge around the interface, which can interfere with bundling in the detectors. All fuse widths were measured as a part of the fusing procedure
 
Fuse widths are the maximum thickness of a fiber at the fuse site between the scintillating fiber and the upstream end of the waveguide. The fusing process typically creates a slight bulge around the interface, which can interfere with bundling in the detectors. All fuse widths were measured as a part of the fusing procedure
179

edits

Navigation menu