∑ m X = − L X L X ∑ m b 1 = − J b 1 J b 1 Y m X L X ( θ X , ϕ X ) D m b 1 n b 1 J b 1 ∗ ( θ b 1 , ϕ b 1 , 0 ) [ ( − ) J X + 1 + ϵ e 2 i α ( J b 1 L X J X m b 1 m X − 1 ) + ( J b 1 L X J X m b 1 m X − 1 ) ] k L X q J b 1 ( I b 1 1 I X I z π + I z π − I z π + + I z π − ) {\displaystyle \sum \limits _{m_{X}=-L_{X}}^{L_{X}}\sum \limits _{m_{b1}=-J_{b1}}^{J_{b1}}Y_{m_{X}}^{L_{X}}(\theta _{X},\phi _{X})D_{m_{b1}n_{b1}}^{J_{b1}*}(\theta _{b1},\phi _{b1},0)\left[(-)^{J_{X}+1+\epsilon }e^{2i\alpha }\left({\begin{array}{cc|c}J_{b1}&L_{X}&J_{X}\\m_{b1}&m_{X}&-1\end{array}}\right)+\left({\begin{array}{cc|c}J_{b1}&L_{X}&J_{X}\\m_{b1}&m_{X}&-1\end{array}}\right)\right]k^{L_{X}}q^{J_{b1}}\left({\begin{array}{cc|c}I_{b1}&1&I_{X}\\I_{z\pi ^{+}}&I_{z\pi ^{-}}&I_{z\pi ^{+}}+I_{z\pi ^{-}}\end{array}}\right)}