Determining Angle of First Diffraction Minimum
We start off with Maxwell's Equation in the Lorentz gauge:

Where:

Lorentz Gauge: 
Introduce Green's function at
from some impulse source at

Let 
Then 
In free space, translational symmetry implies:

∴

, where 
But, 
∴

Chose the "retarded" solution, such that the function is zero unless t>t'




![{\displaystyle ={\frac {1}{(2\pi )^{2}}}{\frac {2}{|\mathbf {r} -\mathbf {r} '|}}{\frac {2\pi }{4}}\left[2\delta (|\mathbf {r} -\mathbf {r} '|+c(t-t'))-2\delta (|\mathbf {r} -\mathbf {r} '|-c(t-t'))\right]\Theta }](https://wikimedia.org/api/rest_v1/media/math/render/svg/3394247f6cd4c7ed9b7886482e680109b54f0286)
But the term 
∴
Now to get the
in the half-space with z>0 with the boundary condition
at
we take the difference:

Now use Green's theorem:
Let 
![{\displaystyle \int \mathbf {\nabla } \cdot \mathbf {F} d^{4}r=\int cdt\int d^{3}r[\mathbf {\nabla } A\cdot \mathbf {\nabla } G+A\nabla ^{2}G_{1}-\mathbf {\nabla } G\cdot \mathbf {\nabla } A-G_{1}\nabla ^{2}A]}](https://wikimedia.org/api/rest_v1/media/math/render/svg/44ecbcc359f60ba20c637daa5f29c0d95d147890)
But 
, let 
![{\displaystyle \int \nabla \cdot \mathbf {F} d^{4}r=A(r')+{\frac {1}{c^{2}}}\int d^{4}r\left[A{\frac {\partial ^{2}}{\partial t^{2}}}G_{1}-G_{1}{\frac {\partial ^{2}}{\partial t^{2}}}A\right]}](https://wikimedia.org/api/rest_v1/media/math/render/svg/1de7101b8f172e16a09b0ac7aa3e4d56f161acc4)
The last term vanishes if
fall off sufficiently fast at
. They do. So:

Now invoke the divergence theorem on the half space
:
, where the last term is zero by the constriction of

To do the t integral, I need to bring out the z derivative. To do this, I first turn it into a z' derivative, using the relation:
, where 

∴ 
At
, 
If
is independent of
, then:

This gives us uniform translation of waves at velocity c. More generally:



In our case, we consider only those waves which degrade as
, so:


In cylindrical coordinates,
. Also,
. So:

Let
Then


