Line 26:
Line 26:
Using the programming power of Matlab, we can solve our system of equations Mv=b, where M, v, and b are given below.
Using the programming power of Matlab, we can solve our system of equations Mv=b, where M, v, and b are given below.
+
{|width="80%"
+
|align="right"|
<math>M = \begin{bmatrix}
<math>M = \begin{bmatrix}
-1 & 1 & 1 & 0\\
-1 & 1 & 1 & 0\\
Line 32:
Line 34:
0 & Z_2^{-1} e^{ik_2a} & Z_2^{-1} e^{-ik_2a} & -Z_1^{-1} e^{-ik_1a}
0 & Z_2^{-1} e^{ik_2a} & Z_2^{-1} e^{-ik_2a} & -Z_1^{-1} e^{-ik_1a}
\end{bmatrix}</math>
\end{bmatrix}</math>
+
|align="center"|(1)
+
|}
+
<math> v = \begin{bmatrix} E_r\\ E_f\\ E_b\\ E_t\end{bmatrix}</math>
<math> v = \begin{bmatrix} E_r\\ E_f\\ E_b\\ E_t\end{bmatrix}</math>