Line 1:
Line 1:
== In Free Space ==
== In Free Space ==
−
These are the Maxwell's Equations we will be using to solve for "region I" in our approximation of the Michelson interferometer.
+
These are the Maxwell's Equations we will be using to solve for regions "I" and "II" in our approximation of the Michelson interferometer.
Gauss' Law:
Gauss' Law:
{| class="wikitable" style="margin: 1em auto 1em auto"
{| class="wikitable" style="margin: 1em auto 1em auto"
−
|<math>\boldsymbol{\nabla \cdot E} = 0 </math>|align="right" width="200"| (1)
+
|<math>\boldsymbol{\nabla \cdot E} = 0 </math>|align="right" width="200"| (1) |}
−
|}
Gauss' Law for Magnetism:
Gauss' Law for Magnetism:
{| class="wikitable" style="margin: 1em auto 1em auto"
{| class="wikitable" style="margin: 1em auto 1em auto"
−
|<math>\boldsymbol{\nabla \cdot B} = 0</math>|align="right" width="200"| (2)
+
|<math>\boldsymbol{\nabla \cdot B} = 0</math>|align="right" width="200"| (2)|}
−
|}
Faradays's Law:
Faradays's Law:
{| class="wikitable" style="margin: 1em auto 1em auto"
{| class="wikitable" style="margin: 1em auto 1em auto"
−
|<math>\boldsymbol{\nabla \times E} + \frac{\partial \boldsymbol{B}}{\partial t}= 0</math>|align="right" width="200"| (3)
+
|<math>\boldsymbol{\nabla \times E} + \frac{\partial \boldsymbol{B}}{\partial t}= 0</math>|align="right" width="200"| (3) |}
−
|}
Ampere's Law:
Ampere's Law:
{| class="wikitable" style="margin: 1em auto 1em auto"
{| class="wikitable" style="margin: 1em auto 1em auto"
−
|<math>\boldsymbol{\nabla \times B} - \mu_0\epsilon_0\frac{\partial \boldsymbol{E}}{\partial t}= 0 </math>|align="right" width="200"| (4)
+
|<math>\boldsymbol{\nabla \times B} - \mu_0\epsilon_0\frac{\partial \boldsymbol{E}}{\partial t}= 0 </math>|align="right" width="200"| (4)|}
−
|}
+
{| class="wikitable" style="margin: 1em auto 1em auto"
{| class="wikitable" style="margin: 1em auto 1em auto"