Microscope Electronics
Electronics
The GlueX experiment will use a 9 GeV linearly polarized photon beam to search for mesons with gluonic excitations, and measure their spectrum and couplings. To create a well-collimated photon beam, the 12 GeV electron beam from CEBAF will pass through a 20um thick diamond wafer and undergo coherent bremsstrahlung. In order to know the energy of the photon the post-bremsstrahlung electron energy must be measured. A magnet is used to spatially separate the electrons corresponding to their energy which are incident on scintillating fibers. These fibers are located to provide 4 MeV energy resolution and propagate the signal to Silicon Photomultiplier (SiPM) counters that are mounted on custom high speed circuit boards. The scintillating fibers and electronics are housed in a light-sealed enclosure called the Tagger Microscope, which the research group at the University of Connecticut have designed to measure the post-bremsstrahlung electron energy, and therefore, the emitted photon energy.
Preamplifier
The purpose of the preamplifier is to receive signals from the scintillating fibers on the SiPMs and amplify the signal. These boards have two stages, the amplifying and summing circuits. In the first amplifying circuit the 15 SiPMs are individually amplified and can be independently readout. The summing circuit takes groups of 5 individual SiPM channels and sums the signals together into a summed output. This summing circuit also has the capability to change the gain of the amplified signal which allows for the study of cosmic rays and to see the dark rate of the SiPM.
- Preamp Version 2.0 Revision Notes
- SmartPDF of Preamp Version 2.0
- Microscope Electronics Logbook - Alex Barnes
- Picture of Preamp V2.0
- List of Board Changes
[Note: Low gain mode is set to 5V and high gain mode is set to 10V]
Digital Control Board
Backplane
In progress