Error propagation in Amplitude Analysis

From UConn PAN
Revision as of 01:42, 22 November 2011 by Senderovich (talk | contribs)
Jump to navigation Jump to search

The following is a review of error propagation needed in amplitude analysis.

Consider a Monte-Carlo (MC) integral over the intensities of N detected events out of Ngen generated.

where we take n coherent amplitudes and allow incoherent sums indexed by γ, δ to allow for applications like spin-density matrices (ρ). When amplitude analysis fits contain amplitudes with not free parameters, it is convenient to rearrange the summations above, to pre-compute the sum over the intensities of the events:

storing the term in square brackets, a matrix indexed by α,β, for contractions with varying free production parameters u in the course of a fit.

When considering the uncertainty on the overall integral, both the errors on u parameters and those from the finite MC set of events will contribute. A single detected event (i) can be viewed as one sample of a Poisson process, having therefore an uncertainty of σi=1. An integral over such events is then a weighted sum of such samples, having therefore a contribution to the variance:

The relevant piece to pre-compute over the event set for error calculation is shown in brackets. Turning our attention now to the contribution to error on the production parameters u:

Failed to parse (syntax error): {\displaystyle \sigma_{fit}^2= \sum_{k,l}^n{ \sigma_{u_k}\sigma_{u_l} \frac{\partial}{\partial u_k}\left( \sum_{\gamma,\delta}{\rho_{\gamma\delta} \sum_{\alpha,\beta}^n{ u_\alpha u_\beta^* \left[ \frac{1}{N_{gen}}\sum_i^N{ A_\alpha^{\gamma \delta}(x_i) A_\beta^{\gamma \delta *}(x_i) } \right] } } \right) \frac{\partial}{\partial u_l} \sum_{\gamma,\delta}{\rho_{\gamma\delta} \sum_{\alpha,\beta}^n{ u_\alpha u_\beta^* \left[ \frac{1}{N_{gen}}\sum_i^N{ A_\alpha^{\gamma \delta}(x_i) A_\beta^{\gamma \delta *}(x_i) } \right] } } \right) } }