General Relations
Angular Distribution of Two-Body Decay
Let's begin with a general amplitude for the two-body decay of a state with angular momentum quantum numbers J,m. Specifically, we want to know the amplitude of this state having daughter 1 with trajectory
.
We can also describe the angular momentum between the daughters as being L and spin sum as s. Alternatively, we will label the daughters as having helicities of
and
- projections on the direction of decay (specified by daughter 1)
 |
insertion of the complete set of helicity basis vectors
|
 |
insertion of the complete LS basis set
|
![{\displaystyle =\sum _{L,S}\left[{\sqrt {\frac {2J+1}{4\pi }}}D_{m\lambda }^{J*}(\Omega ,0)\right]\left[{\sqrt {\frac {2L+1}{2J+1}}}\left({\begin{array}{cc|c}L&S&J\\0&\lambda &\lambda \end{array}}\right)\left({\begin{array}{cc|c}S_{1}&S_{2}&S\\\lambda _{1}&-\lambda _{2}&\lambda \end{array}}\right)\right]a_{LS}^{J}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/a93b86e837aee85c12249ab0f791a8c2693e53e6) |
Substitution of each bra-ket with their respective formulae.
Note that in the event of one daughter being spin-less, the second
Clebsch-Gordan coefficient is 1
|
Isospin Projections
One must also take into account the various ways isospin of daughters can add up to the isospin quantum numbers of the parent, requiring a term:
where a=1 and b=2, referring to the daughter number. Because an even-symmetric angular wave function (i.e. L=0,2...) imply that 180 degree rotation is equivalent to reversal of daughter identities (a,b becoming b,a) one must write down the symmetrized expression:
Application
Production
Proton-Reggeon vertex
The amplitude of target proton's emission of an exchange particle, a reggeon, in particular direction and helicity projections can be written as:
Photon-Reggeon-Resonance vertex
Consider the production of the resonance from the photon and reggeon in the reflectivity basis, the eigenstates of the reflectivity operator. (This operator is a combination of parity and
rotation about the normal to the production plane (usually y axis.)
The eigenstates of the reflectivity operator are formed as follows:
such that
The photon linear polarization states turn out to be eigenstates of reflectivity as well:
Let x (y) polarization states be denoted with - (+)
Since the production Hamiltonian should commute with reflectivity:
Acting with the reflectivity operator on initial and final state brings out the reflectivity eigenvalues of the
resonance, photon and reggeon. This result leads to a constraint:
Decay