|
defining an amplitude...
|
 |
angular distributions two-body X and decays
|
![{\displaystyle \left[P_{X}(-)^{J_{X}+1+\epsilon }e^{2i\alpha }\left({\begin{array}{cc|c}J_{b1}&L_{X}&J_{X}\\m_{b1}&m_{X}&-1\end{array}}\right)+\left({\begin{array}{cc|c}J_{b1}&L_{X}&J_{X}\\m_{b1}&m_{X}&+1\end{array}}\right)\right]}](https://wikimedia.org/api/rest_v1/media/math/render/svg/2b594058c103d8cb27c18e33b46b2ad416af9bee) |
resonance helicity sum: ε=0 (1) for x (y) polarization; </math>P_X</math> is the parity of the resonance
|
 |
polarization term: η is the polarization fraction
|
 |
k, q are breakup momenta for the resonance and isobar, respectively
|
 |
Clebsch-Gordan coefficients for isospin sum
|
| Failed to parse (syntax error): {\displaystyle \sum\limits_{L_{b1}=0}^{2} \sum\limits_{m_{L_{b1}}=-L_{b1}}^{L_{b1}} \sum\limits_{m_\omega}=-J_\omega}^{J_\omega} \sum\limits_{\lambda_\rho}=-s_\rho}^{s_\rho} D_{m_\omega \lambda_\rho}^{J_\omega *}(\theta_\omega,\phi_\omega,0) Y_{\lambda_\rho}^{s_\rho}(\theta_\rho,\phi_\rho) }
|
two-stage breakup angular distributions,
currently modeled as
|
 |
angular momentum sum Clebsch-Gordan coefficients for b1 and ω decays.
|
 |
Clebsch-Gordan coefficients for isospin sums:
|