∑ m X = − L X L X ∑ m b 1 = − J b 1 J b 1 Y m X L X ( θ X , ϕ X ) D m b 1 n b 1 J b 1 ∗ ( θ b 1 , ϕ b 1 , 0 ) [ ( − ) J X + 1 + ϵ e 2 i α ( J b 1 L X J X m b 1 m X − 1 ) + ( J b 1 L X J X m b 1 m X − 1 ) ] ( 1 + ( − ) ϵ η 4 ) k L X q J b 1 ( I b 1 1 I X I z π + I z π − I z π + + I z π − ) ∑ L b 1 = 0 2 ∑ m L b 1 = − L b 1 L b 1 ( s ω L b 1 J b 1 0 m L b 1 m b 1 ) D m ω λ ρ J ω ∗ ( θ ω , ϕ ω , 0 ) Y m ρ s ρ ( θ ρ , ϕ ρ ) ( 1 s ρ J ω 0 λ ρ m ω ) ∑ I ρ = 0 1 ∑ I z ρ = − I ρ I ρ ( 1 I ρ 0 0 I z ρ 0 ) ( I π I π I ρ + 1 − 1 I z ρ ) {\displaystyle \sum \limits _{m_{X}=-L_{X}}^{L_{X}}\sum \limits _{m_{b1}=-J_{b1}}^{J_{b1}}Y_{m_{X}}^{L_{X}}(\theta _{X},\phi _{X})D_{m_{b1}n_{b1}}^{J_{b1}*}(\theta _{b1},\phi _{b1},0)\left[(-)^{J_{X}+1+\epsilon }e^{2i\alpha }\left({\begin{array}{cc|c}J_{b1}&L_{X}&J_{X}\\m_{b1}&m_{X}&-1\end{array}}\right)+\left({\begin{array}{cc|c}J_{b1}&L_{X}&J_{X}\\m_{b1}&m_{X}&-1\end{array}}\right)\right]\left({\frac {1+(-)^{\epsilon }\eta }{4}}\right)k^{L_{X}}q^{J_{b1}}\left({\begin{array}{cc|c}I_{b1}&1&I_{X}\\I_{z\pi ^{+}}&I_{z\pi ^{-}}&I_{z\pi ^{+}}+I_{z\pi ^{-}}\end{array}}\right)\sum \limits _{L_{b1}=0}^{2}\sum \limits _{m_{L_{b1}}=-L_{b1}}^{L_{b1}}\left({\begin{array}{cc|c}s_{\omega }&L_{b1}&J_{b1}\\0&m_{L_{b1}}&m_{b1}\end{array}}\right)D_{m_{\omega }\lambda _{\rho }}^{J_{\omega }*}(\theta _{\omega },\phi _{\omega },0)Y_{m_{\rho }}^{s_{\rho }}(\theta _{\rho },\phi _{\rho })\left({\begin{array}{cc|c}1&s_{\rho }&J_{\omega }\\0&\lambda _{\rho }&m_{\omega }\end{array}}\right)\sum \limits _{I_{\rho }=0}^{1}\sum \limits _{I_{z\rho }=-I_{\rho }}^{I_{\rho }}\left({\begin{array}{cc|c}1&I_{\rho }&0\\0&I_{z\rho }&0\end{array}}\right)\left({\begin{array}{cc|c}I_{\pi }&I_{\pi }&I_{\rho }\\+1&-1&I_{z\rho }\end{array}}\right)}