Lens Assembly Structural Analysis

From UConn PAN
Revision as of 17:20, 17 December 2009 by Tnemiger (talk | contribs)
Jump to navigation Jump to search

Data Recording

In our lab experiments, we must measure and record a colimnated light beam. This is done by shining the beam into a camera (the Casio Exilim EX-F1) and photographing the results. In order to properly interpret the information, it is necessary to understand the effects of the lenses on the image. This is incredibly difficult because of a number of factors. Most importantly, we have no way to directly measure the camera and acquire most of the information that we need. The lens assembly on the Exilim EX-F1 cannot be removed, so we cannot replace it with a custom- built lens assembly of known dimensions. All we can measure are a limited number of lengths, and we know the ranges of F-numbers and focal lengths. In order to solve this problem, a number of significant approximations and generalizations must be made. While the actual lens assembly contains twelve disparate lenses, our approximation has only four, and unlike the actual assembly, our approximation contains only perfect, idealized spherical lenses. These approximations would certainly affect our final results, but most likely not enough to severely skew our results.

Inside the Lens Assembly

This leads to a significant problem: How can we analyze the structure of something we cannot access? We contacted Casio, but the company was unwilling to divulge any detailed information about the lens assembly. Actually dismantling the lens assembly is out of the question unless a second camera could be acquired, and acquiring a second camera to dismantle would be prohibitively expensive. Instead, we chose to geometrically approximate the light paths through the lens apparatus and compare these results with data we were able to acquire. This would prove difficult, but it would also prove to be a generally successful approximation.

A Sliding Scale

By representing the lens assembly numerically, we would be able to calculate the effects of the lens experimentally. This would be done by taking photographs of the light beam and comparing the magnification of the final image with the size of the initial object. These values could be plugged into an Excel spreadsheet, and various values for the spacing of the lenses and their focal lengths could be entered appropriately. In addition, the few known and measurable values could be added as well.

First Iteration

[Image of a thin lens focusing. Image taken from Wikipedia]

With this known, we were able to create a basic spreadsheet. While many details of this sheet would later be proven wrong or simply be abandoned, the concepts are valid, and it is a sufficient starting point. To make the math easier, the lens asembly would be broken down into the four lenses, all of which would be approximated as thin lenses. For each lens, an image would be generated from the object, and that image would then be treated as the object for the next lens. This means, for instance, that the light rays traveling from the object would pass through the first lens and generate an image at some distance within the lens assembly. This image would then be treated as the object for the second lens, which would generate an image used as the object for the fourth lens, and so on. This was fairly simply done. For a thin lens,

 

which can be expressed as

 

where D is the distance from the object to the lens, L is the distance from the lens to the object, and F is the focal length of the lens. This equation was used to generate each image. The magnification of each image can be calculated by

 

which can be expressed as

 

where   is the size of the object and   is the size of the image. By repeating these calculations for all lenses in the lens assembly, a final image magnification could be calculated. Unfortunately, there were problems with this approximation, namely that it uses the wrong type of light. This approximation assumes that the object is a physical thing, which would allow light rays to leave it from any angle, allowing the required light rays shown in the illustration to pass through the lens. However, the light used is collimnated laser light, meaning that all the light rays are parallel when they enter the lens assembly. Therefore, this approximation is invalid.

Second Iteration

(Illustration pending)

If the light entering the lens assembly is colimnated and enters the , then the top and bottom beams (the only two beams needed to locate the image) will travel through the first lens parallel, and both will cross through the focal point. The size of the image will then be

 

which can be expressed as

 

Using the same logic as the first iteration, this magnified image can be treated as the object for the next lens. This approximation has the advantage of being very simple, mathematically, while also being more accurate for collimnated light. Unfortunately, that approximation cannot be used. Because the light is collimnated, we must instead follow the paths of the beams as they are deflected through the lenses rather than simply treat the image as a new object. Worse yet, the light paths will almost certainly not pass through the focal point; rather, they will pass through some point aligned with the focal point. The rays will all pass through one certain specific point on the focal plane. This mst be approximated, and the math must be rectified to correct for this.

Third Iteration

Fourth Iteration?