The model of the SiPM amplifier is a system of 24 equations in 24 variables that has been linearized so that it can be solved by MATLAB.
Parameters and variables
The MATLAB model has a number of parameters and variables to describe the amplifier circuit, including the 24 unknowns, 4 inputs, and numerous constants.
Input parameters
There are four input parameters:
- Input current:
(A)
- Bias voltage:
(V)
- Power voltage:
(V)
- Frequency:
(Hz)
Unknown variables
There are twenty-four unknown variables. The locations (and directions in the case of currents) are labeled on the circuit diagram. All unknowns are assumed to be of the form
,
where
gives the amplitude of oscillation, or the AC component, and
gives the DC offset.
- Node voltages:
,
,
,
,
,
,
- Note: there is no
on this circuit; it was a redundant variable with
.
- Resistor currents:
,
,
,
,
,
,
, 
- Transistor currents:
,
,
,
,
, 
- Capacitor currents:
,
, 
Constants
Resistors
The resistance values are mostly the same as those marked on the actual amplifier itself, however
and
were changed for better agreement of the model with the desired responses. See the article on the actual SiPM Amplifier for details on that circuit.
| Component |
Resistance
|
 |
|
 |
|
 |
|
 |
|
 |
|
 |
|
 |
|
 |
|
Capacitors
The capacitors are not labeled on the amplifier itself or in the documentation supplied with the amplifier, so the following values are guesses as to the capacitances. Note that
does not exist.
| Component |
Capacitance
|
 |
|
 |
|
 |
|
 |
|
Transistors
The transistor parameters used are selections from the Gummel-Poon SPICE model parameters for these two parts.
| Parameter |
Description |
value |
value
|
| VT |
temperature voltage |
0.0259 |
0.0259
|
| BF |
ideal forward maximum  |
93 |
34
|
| NF |
forward current emission coefficient |
0.99 |
1.0
|
| IS |
transport saturation current |
0.24 fA |
0.44 fA
|
| ISE |
B-E leakage saturation current |
2.4 fA |
87 fA
|
| NE |
B-E leakage emission coefficient |
1.46 |
1.94
|
| RB |
zero-bias base resistance |
21 |
5
|
| RE |
emitter resistance |
0.37 |
1
|
Equations
There are five categories of equations, which give a set of twenty-four equations in total. Two categories of equations are non-linear and need to be linearized to solve this system as a linear model using matrices.
Resistor voltage drop
The resistor voltage drop equations all take the form

or alternately
.
They describe the voltage drop associated with current crossing a resistor, according to Ohm's Law. As such, there is one equation per resistor in the circuit.
: 
: 
: 
: 
: 
: 
: 
: 
Node charge flow
Each node must maintain a dynamic equilibrium of charge during steady-state operation. That means that flow of charge (current) into a given node must equal flow of charge (current) out of that same node. Thus the node charge flow equations take the form of

or alternately
.
There is one such equation per node, and each node already is labeled on the above diagram by the voltage at that point; thus there is one equation per voltage. Additionally, each transistor acts as a node.
: 
: 
: 
: 
: 
: 
: 
: 
Capacitors
Capacitors relate current and voltage according to the equation
.
As stated above, the unknown voltages and currents are assumed to be of the form

so the capacitor equation can be linearized as

where
. This equation works for both AC and DC cases, because in the DC case the derivative on the voltage eliminates any DC bias for the current, but
so the equation still holds. There is one such equation for each capacitor.
: 
: Failed to parse (syntax error): {\displaystyle h_2 = i \omega C_2 {V_2 - V_3)}
: 
: 