| Line 38: |
Line 38: |
| | = \sum_{\gamma,\delta}{\rho_{\gamma\delta} | | = \sum_{\gamma,\delta}{\rho_{\gamma\delta} |
| | \sum_{\alpha,\beta}^n{ | | \sum_{\alpha,\beta}^n{ |
| − | u_\alpha u_\beta^* J_{\alpha \beta} | + | u_\alpha u_\beta^* J^{\gamma\delta}_{\alpha \beta} |
| | } | | } |
| | } | | } |
| Line 46: |
Line 46: |
| | | | |
| | When considering the uncertainty on the overall integral, both the errors on ''u'' parameters | | When considering the uncertainty on the overall integral, both the errors on ''u'' parameters |
| − | and those from the finite MC set of events will contribute. A single detected event (i) can be viewed as one sample of a Poisson process, having therefore an uncertainty of | + | and those from the finite MC set of events will contribute. A single detected event (i) can be viewed as one sample in a process of independent events, having therefore a count uncertainty of |
| | σ<sub>i</sub>=1. An integral over such events is then a weighted sum of such samples, | | σ<sub>i</sub>=1. An integral over such events is then a weighted sum of such samples, |
| − | having therefore a contribution to the variance: | + | having resulting in a contribution to the variance: |
| | | | |
| | <math> | | <math> |
| Line 79: |
Line 79: |
| | <math> | | <math> |
| | \sigma_{fit}^2= | | \sigma_{fit}^2= |
| − | \sum_{k,l}^n{ \sigma_{u_k}\sigma_{u_l} | + | \left| \sum_k^n{ \sigma_{u_k} |
| | \frac{\partial}{\partial u_k}\left( | | \frac{\partial}{\partial u_k}\left( |
| − | \sum_{\gamma,\delta}{\rho_{\gamma\delta} | + | \sum_{\gamma,\delta}{ \rho_{\gamma\delta} |
| − | \sum_{\alpha,\beta}^n{ | + | \sum_{\alpha,\beta}^n{u_\alpha u_\beta^* J_{\alpha\beta}} |
| − | u_\alpha u_\beta^* J_{\alpha\beta} | + | } |
| | + | \right) |
| | + | } |
| | + | \right|^2 |
| | + | </math> |
| | + | ::<math> |
| | + | =\left( \sum_k^n{ \sigma_{u_k} |
| | + | \sum_{\gamma,\delta}{ \rho_{\gamma\delta} |
| | + | \sum_{\alpha,\beta}^n{\delta_{k\alpha} u_\beta^* J^{\gamma\delta}_{\alpha\beta}} |
| | + | } |
| | + | }\right) |
| | + | \left( \sum_{k'}^n{ \sigma^*_{u_{k'}} |
| | + | \sum_{\gamma',\delta'}{ \rho_{\gamma'\delta'} |
| | + | \sum_{\alpha',\beta'}^n{\delta_{k'\alpha'} u_{\beta'} J^{\gamma'\delta'*}_{\alpha'\beta'}} |
| | + | } |
| | + | }\right) |
| | + | </math> |
| | + | ::<math> |
| | + | = \sum_{\gamma,\delta,\gamma',\delta'}{ |
| | + | \rho_{\gamma\delta} \rho_{\gamma'\delta'} |
| | + | \sum_{\alpha,\beta,\alpha',\beta'}^n{ |
| | + | \left(\sigma_{u_\alpha}\sigma^*_{u_{\alpha'}}\right) |
| | + | \left(u_\beta^* J^{\gamma\delta}_{\alpha\beta}\right) |
| | + | \left(u_{\beta'} J^{\gamma'\delta'*}_{\alpha'\beta'} \right) |
| | } | | } |
| | } | | } |
| − | \right)
| + | </math> |
| − | \frac{\partial}{\partial u_l}\left(
| + | ::<math> |
| − | \sum_{\gamma',\delta'}{\rho_{\gamma'\delta'}
| + | = \sum_{\gamma,\delta,\gamma',\delta'}{ |
| − | \sum_{\alpha',\beta'}^n{ | + | \rho_{\gamma\delta} \rho_{\gamma'\delta'} |
| − | u_{\alpha'} u_{\beta'}^* J_{\alpha'\beta'} | + | \sum_{\alpha,\alpha'}^n{ |
| | + | \left(\sigma_{u_\alpha}\sigma^*_{u_{\alpha'}}\right) |
| | + | G^{\gamma\delta*}_\alpha G_{\alpha'}^{\gamma\delta} |
| | } | | } |
| | } | | } |
| − | \right)
| |
| − | }
| |
| | </math> | | </math> |
| − | The product of σ terms in the summation are the error matrix derived from the fit. | + | |
| | + | The product of σ terms in the summation is represented by the error matrix derived from the fit. ''G'' was defined as |
| | + | |
| | + | <math> |
| | + | G_\alpha^{\gamma\delta}=\sum_\beta{ u_\beta J_{\alpha\beta}^{\gamma\delta}} |
| | + | </math> |
| | + | |
| | + | The overall uncertainty in the integral ''I'' defined in the beginning comes out to: |
| | + | |
| | + | <math> |
| | + | \sigma_I=\sqrt{\sigma^2_{MC} + \sigma^2_{fit}} |
| | + | </math> |