Difference between revisions of "Error propagation in Amplitude Analysis"

From UConn PAN
Jump to navigation Jump to search
m
Line 34: Line 34:
 
       }
 
       }
 
       \right]
 
       \right]
 +
    }
 +
  }
 +
= \sum_{\gamma,\delta}{\rho_{\gamma\delta}
 +
    \sum_{\alpha,\beta}^n{
 +
      u_\alpha u_\beta^* J_{\alpha \beta}
 
     }
 
     }
 
   }
 
   }
Line 78: Line 83:
 
   \sum_{\gamma,\delta}{\rho_{\gamma\delta}
 
   \sum_{\gamma,\delta}{\rho_{\gamma\delta}
 
     \sum_{\alpha,\beta}^n{
 
     \sum_{\alpha,\beta}^n{
       u_\alpha u_\beta^*  
+
       u_\alpha u_\beta^* J_{\alpha\beta}
      \left[ \frac{1}{N_{gen}}\sum_i^N{
 
        A_\alpha^{\gamma \delta}(x_i) A_\beta^{\gamma \delta *}(x_i)
 
      }
 
      \right]
 
 
     }
 
     }
 
   }
 
   }
 
   \right)  
 
   \right)  
   \frac{\partial}{\partial u_l}
+
   \frac{\partial}{\partial u_l}\left(
   \sum_{\gamma,\delta}{\rho_{\gamma\delta}
+
   \sum_{\gamma',\delta'}{\rho_{\gamma'\delta'}
     \sum_{\alpha,\beta}^n{
+
     \sum_{\alpha',\beta'}^n{
       u_\alpha u_\beta^*  
+
       u_{\alpha'} u_{\beta'}^* J_{\alpha'\beta'}
      \left[ \frac{1}{N_{gen}}\sum_i^N{
 
        A_\alpha^{\gamma \delta}(x_i) A_\beta^{\gamma \delta *}(x_i)
 
      }
 
      \right]
 
 
     }
 
     }
 
   }
 
   }
 
   \right)  
 
   \right)  
 
}
 
}
 
 
</math>
 
</math>
 +
The product of &sigma; terms in the summation are the error matrix derived from the fit.

Revision as of 01:49, 22 November 2011

The following is a review of error propagation needed in amplitude analysis.

Consider a Monte-Carlo (MC) integral over the intensities of N detected events out of Ngen generated.

where we take n coherent amplitudes and allow incoherent sums indexed by γ, δ to allow for applications like spin-density matrices (ρ). When amplitude analysis fits contain amplitudes with not free parameters, it is convenient to rearrange the summations above, to pre-compute the sum over the intensities of the events:

storing the term in square brackets, a matrix indexed by α,β, for contractions with varying free production parameters u in the course of a fit.

When considering the uncertainty on the overall integral, both the errors on u parameters and those from the finite MC set of events will contribute. A single detected event (i) can be viewed as one sample of a Poisson process, having therefore an uncertainty of σi=1. An integral over such events is then a weighted sum of such samples, having therefore a contribution to the variance:

The relevant piece to pre-compute over the event set for error calculation is shown in brackets. Turning our attention now to the contribution to error on the production parameters u:

The product of σ terms in the summation are the error matrix derived from the fit.