Difference between revisions of "Amplitudes for the Exotic b1π Decay"

From UConn PAN
Jump to navigation Jump to search
Line 1: Line 1:
= NEW =
 
 
== General Relations ==
 
== General Relations ==
  
Line 137: Line 136:
 
\langle \Omega_\rho 0 \lambda_\rho | U | J_\rho , m_\rho=\lambda_\rho \rangle C_\rho(L_\rho) v^{L_\rho}  
 
\langle \Omega_\rho 0 \lambda_\rho | U | J_\rho , m_\rho=\lambda_\rho \rangle C_\rho(L_\rho) v^{L_\rho}  
 
</math>
 
</math>
 
= OLD =
 
 
<table>
 
<tr>
 
<td><math>
 
A_{}^{J_X L_X P_X}=
 
</math></td>
 
<td>
 
defining an amplitude...
 
</td>
 
</tr>
 
<tr>
 
<td><math>
 
\sum\limits_{m_X=-L_X}^{L_X}
 
\sum\limits_{m_{b1}=-J_{b_1}}^{J_{b_1}}
 
\sum\limits_{m_\omega=-J_\omega}^{J_\omega}
 
D_{m_X m_{b_1}}^{L_X *}(\theta_X,\phi_X,0)
 
D_{m_{b_1} m_\omega}^{J_{b_1}*}(\theta_{b_1},\phi_{b_1},0)
 
</math></td>
 
<td>
 
angular distributions two-body X and <math>b_1 (J_{b_1}^{PC}=1^{+-})</math> decays
 
</td>
 
</tr>
 
<tr>
 
<td><math>
 
\left[
 
P_X(-)^{J_X+1+\epsilon} e^{2i\alpha}
 
\left(\begin{array}{cc|c}
 
J_{b_1} & L_X & J_X \\
 
m_{b_1} & m_X & -1
 
\end{array}\right)
 
+
 
\left(\begin{array}{cc|c}
 
J_{b_1} & L_X & J_X \\
 
m_{b_1} & m_X & +1
 
\end{array}\right)
 
\right]
 
</math></td>
 
<td>
 
resonance helicity sum: &epsilon;=0 (1) for x (y) polarization; <math>P_X</math> is the parity of the resonance
 
</td>
 
</tr>
 
<tr>
 
<td><math>
 
\left(\frac{1+(-)^\epsilon \eta}{4}\right)
 
</math></td>
 
<td>
 
polarization term: &eta; is the polarization fraction
 
</td>
 
</tr>
 
<tr>
 
<td><math>
 
k^{L_X} q^{L_{b_1}}
 
</math></td>
 
<td>
 
k, q are breakup momenta for the resonance and isobar, respectively
 
</td>
 
</tr>
 
<tr>
 
<td><math>
 
\left(\begin{array}{cc|c}
 
I_{b_1}    & I_\pi      & I_X \\
 
I_{zb_1^+} & I_{z\pi^-} & I_{zb_1^+}+I_{z\pi^-}
 
\end{array}\right)
 
</math></td>
 
<td>
 
Clebsch-Gordan coefficients for isospin sum <math>b_1 \oplus \pi^- \rightarrow X</math>
 
</td>
 
</tr>
 
<tr>
 
<td><math>
 
\sum\limits_{L_{b_1}=0}^{2}
 
\sum\limits_{m_{L_{b_1}}=-L_{b_1}}^{L_{b_1}}
 
\sum\limits_{L_{\pi^+\pi^-},L_\omega=1,3}
 
\sum\limits_{m_{\pi^+\pi^-}=-L_{\pi^+\pi^-}}^{L_{\pi^+\pi^-}}
 
u^{L_\omega} v^{L_{\pi^+\pi^-}}
 
</math></td>
 
</tr>
 
<tr>
 
<td><math>
 
D_{m_\omega m_{\pi^+\pi^-}}^{J_\omega *}(\theta_\omega,\phi_\omega,0)
 
Y_{m_{\pi^+\pi^-}}^{L_{\pi^+\pi^-}}(\theta_\rho,\phi_\rho)
 
</math></td>
 
<td>
 
two-stage <math>\omega (J_\omega^{PC}=1^{--})</math> breakup angular distributions,
 
currently modeled as <math>L_{\omega\rightarrow\pi^0+\rho}=0; L_{\rho\rightarrow\pi^++\pi^-}=1=L_{\pi^+\pi^-}</math>
 
</td>
 
</tr>
 
<tr>
 
<td><math>
 
\left(\begin{array}{cc|c}
 
J_\omega & L_{b_1} & J_{b_1} \\
 
m_\omega & m_{L_{b_1}} & m_{b_1}
 
\end{array}\right)
 
\left(\begin{array}{cc|c}
 
L_\omega & L_{\pi^+\pi^-} & J_\omega \\
 
0        & m_{\pi^+\pi^-}  & m_\omega
 
\end{array}\right)
 
</math></td>
 
<td>
 
angular momentum sum Clebsch-Gordan coefficients for b1 and &omega; decays.
 
</td>
 
</tr>
 
<tr>
 
<td><math>
 
\left(\begin{array}{cc|c}
 
I_\pi    & 1 & 0 \\
 
I_{\pi^0} & 0 & 0
 
\end{array}\right)
 
\left(\begin{array}{cc|c}
 
I_{\pi}    & I_{\pi}    & 1 \\
 
I_{z\pi^+} & I_{z\pi^-} & 0
 
\end{array}\right)
 
</math></td>
 
<td>
 
Clebsch-Gordan coefficients for isospin sums: <math>\pi^0 \oplus (\pi^+ \oplus \pi^-) \rightarrow \omega</math>
 
</td>
 
</tr>
 
</table>
 

Revision as of 15:35, 1 August 2011

General Relations

Angular Distribution of Two-Body Decay

Let's begin with a general amplitude for the two-body decay of a state with angular momentum quantum numbers J,m. Specifically, we want to know the amplitude of this state having daughter 1 with trajectory . We can also describe the angular momentum between the daughters as being L and spin sum as s. Alternatively, we will label the daughters as having helicities of and or direction of decay (specified by daughter 1) of

simple insertion of complete sets of states for recoupling

Substitution of each bra-ket with their respective formulae. Note that in the event of one daughter being spin-less, the second Clebsch-Gordan coefficient is 1


Isospin Projections

One must also take into account the various ways isospin of daughters can add up to the isospin quantum numbers of the parent, requiring a term:

where a=1 and b=2, referring to the daughter number. Because an even-symmetric angular wave function (i.e. L=0,2...) imply that 180 degree rotation is equivalent to reversal of daughter identities, a,b becoming b,a on must write down the symmetrized expression:


Application