Difference between revisions of "Amplitudes for the Exotic b1π Decay"
Jump to navigation
Jump to search
Senderovich (talk | contribs) m |
Senderovich (talk | contribs) |
||
| Line 1: | Line 1: | ||
<table> | <table> | ||
| + | A_{}^{J_X L_X P_X} | ||
| + | <td> | ||
| + | defining an amplitude... | ||
| + | </td> | ||
| + | </tr> | ||
<tr> | <tr> | ||
<td><math> | <td><math> | ||
| Line 7: | Line 12: | ||
</math></td> | </math></td> | ||
<td> | <td> | ||
| − | angular distributions two-body X and | + | angular distributions two-body X and <math>b_1 (J_{b_1}^{PC}=1^{+-})</math> decays |
</td> | </td> | ||
</tr> | </tr> | ||
| Line 13: | Line 18: | ||
<td><math> | <td><math> | ||
\left[ | \left[ | ||
| − | (-)^{J_X+1+\epsilon} e^{2i\alpha} | + | P_X(-)^{J_X+1+\epsilon} e^{2i\alpha} |
\left(\begin{array}{cc|c} | \left(\begin{array}{cc|c} | ||
J_{b1} & L_X & J_X \\ | J_{b1} & L_X & J_X \\ | ||
| Line 26: | Line 31: | ||
</math></td> | </math></td> | ||
<td> | <td> | ||
| − | resonance helicity sum | + | resonance helicity sum: ε=0 (1) for x (y) polarization; </math>P_X</math> is the parity of the resonance |
</td> | </td> | ||
</tr> | </tr> | ||
| Line 34: | Line 39: | ||
</math></td> | </math></td> | ||
<td> | <td> | ||
| − | polarization term: | + | polarization term: η is the polarization fraction |
</td> | </td> | ||
</tr> | </tr> | ||
| Line 48: | Line 53: | ||
<td><math> | <td><math> | ||
\left(\begin{array}{cc|c} | \left(\begin{array}{cc|c} | ||
| − | I_{b1} & | + | I_{b1} & I_\pi & I_X \\ |
I_{z\pi^+} & I_{z\pi^-} & I_{z\pi^+}+I_{z\pi^-} | I_{z\pi^+} & I_{z\pi^-} & I_{z\pi^+}+I_{z\pi^-} | ||
\end{array}\right) | \end{array}\right) | ||
| Line 58: | Line 63: | ||
<tr> | <tr> | ||
<td><math> | <td><math> | ||
| − | \sum\limits_{L_{b1}=0}^{2} \sum\limits_{m_{L_{b1}}=-L_{b1}}^{L_{b1}} | + | \sum\limits_{L_{b1}=0}^{2} |
| + | \sum\limits_{m_{L_{b1}}=-L_{b1}}^{L_{b1}} | ||
| + | \sum\limits_{m_\omega}=-J_\omega}^{J_\omega} | ||
| + | \sum\limits_{\lambda_\rho}=-s_\rho}^{s_\rho} | ||
D_{m_\omega \lambda_\rho}^{J_\omega *}(\theta_\omega,\phi_\omega,0) | D_{m_\omega \lambda_\rho}^{J_\omega *}(\theta_\omega,\phi_\omega,0) | ||
| − | Y_{ | + | Y_{\lambda_\rho}^{s_\rho}(\theta_\rho,\phi_\rho) |
</math></td> | </math></td> | ||
<td> | <td> | ||
| − | two-stage | + | two-stage <math>\omega (J_\omega^{PC}=1^{--})</math> breakup angular distributions, |
| + | currently modeled as <math>L_{\omega\rightarrow\pi^0-\rho}=0; L_{\rho\rightarrow\pi^++\pi^-}=1=s_\rho</math> | ||
</td> | </td> | ||
</tr> | </tr> | ||
| Line 69: | Line 78: | ||
<td><math> | <td><math> | ||
\left(\begin{array}{cc|c} | \left(\begin{array}{cc|c} | ||
| − | + | J_\omega & L_{b1} & J_{b1} \\ | |
| − | + | m_\omega & m_{L_{b1}} & m_{b1} | |
\end{array}\right) | \end{array}\right) | ||
\left(\begin{array}{cc|c} | \left(\begin{array}{cc|c} | ||
| Line 78: | Line 87: | ||
</math></td> | </math></td> | ||
<td> | <td> | ||
| − | angular momentum sum Clebsch-Gordan coefficients for b1 and ω decays | + | angular momentum sum Clebsch-Gordan coefficients for b1 and ω decays. |
</td> | </td> | ||
</tr> | </tr> | ||
Revision as of 16:36, 12 July 2011
A_{}^{J_X L_X P_X}
|
defining an amplitude... |
|
|
angular distributions two-body X and decays |
|
|
resonance helicity sum: ε=0 (1) for x (y) polarization; </math>P_X</math> is the parity of the resonance |
|
|
polarization term: η is the polarization fraction |
|
|
k, q are breakup momenta for the resonance and isobar, respectively |
|
|
Clebsch-Gordan coefficients for isospin sum |
|
| Failed to parse (syntax error): {\displaystyle \sum\limits_{L_{b1}=0}^{2} \sum\limits_{m_{L_{b1}}=-L_{b1}}^{L_{b1}} \sum\limits_{m_\omega}=-J_\omega}^{J_\omega} \sum\limits_{\lambda_\rho}=-s_\rho}^{s_\rho} D_{m_\omega \lambda_\rho}^{J_\omega *}(\theta_\omega,\phi_\omega,0) Y_{\lambda_\rho}^{s_\rho}(\theta_\rho,\phi_\rho) } |
two-stage breakup angular distributions, currently modeled as |
|
angular momentum sum Clebsch-Gordan coefficients for b1 and ω decays. |
|
|
Clebsch-Gordan coefficients for isospin sums: |