Difference between revisions of "Construction of a Tabletop Michelson Interferometer"
| Line 1: | Line 1: | ||
== Determining Angle for First Diffraction Minimum == | == Determining Angle for First Diffraction Minimum == | ||
We start off with Maxwell's Equation in the Lorentz gauge: | We start off with Maxwell's Equation in the Lorentz gauge: | ||
| − | <math>\square^2A^\mu(\mathbf{ | + | <math>\square^2A^\mu(\mathbf{r},t) = \square^2A^\mu (r)=(-\mu_1 j^\mu (r))</math><br><br> |
| − | + | Where:<br><br> | |
| − | Where: | ||
<math>A^\mu = (\mathbf{A},\frac{\Phi} {c}), \square^2=\part_\mu \part^\mu = \nabla^2 - \frac{1}{c^2} \frac{\part}{\part t^2}</math> | <math>A^\mu = (\mathbf{A},\frac{\Phi} {c}), \square^2=\part_\mu \part^\mu = \nabla^2 - \frac{1}{c^2} \frac{\part}{\part t^2}</math> | ||
<math>j^\mu = (\mathbf{j},c\rho), \part_\mu= (\mathbf{\nabla}, \frac{1}{c} \frac{\part}{\part t})</math><br><br> | <math>j^\mu = (\mathbf{j},c\rho), \part_\mu= (\mathbf{\nabla}, \frac{1}{c} \frac{\part}{\part t})</math><br><br> | ||
Lorentz Gauge: <math>A^\mu = 0 \rArr \mathbf{\nabla} \cdot \mathbf{A}+\frac{1}{c^2} \frac{\part\Phi}{\part t}=0</math><br><br> | Lorentz Gauge: <math>A^\mu = 0 \rArr \mathbf{\nabla} \cdot \mathbf{A}+\frac{1}{c^2} \frac{\part\Phi}{\part t}=0</math><br><br> | ||
| − | Introduce Green's function at ( | + | Introduce Green's function at<math> (\mathbf{r},t)=r \quad</math> from some impulse source at<math> r'=(\mathbf{r}',t') \quad</math><br><br> |
| − | <math>\square^ | + | <math>\square^2_rG(r,r')=\delta^4(r-r')</math><br><br> |
| − | Let <math> \tilde{G} (q) = \frac{1}{(2\pi)^2} \int d^ | + | Let <math> \tilde{G} (q) = \frac{1}{(2\pi)^2} \int d^4r e^{iqr} G(r,0)</math><br><br> |
| − | Then <math> G(q)=\frac{1}{(2\pi)^2} \int d^4qe^{ | + | Then <math> G(q)=\frac{1}{(2\pi)^2} \int d^4qe^{iqr} \tilde{G}(r,0)</math><br><br> |
In free space, translational symmetry implies:<br><br> | In free space, translational symmetry implies:<br><br> | ||
| − | <math>G( | + | <math>G(r-r',0)=G(r,r') \quad </math><br><br> |
| − | ∴<math> G( | + | ∴<math> G(r,r')=\frac{1}{(2\pi)^2}\int d^4q e^{-iq(r-r')} \tilde{G} (q)</math><br> <math>\square^2_rG(r,r')=\frac{1}{(2\pi)^2}|int d^4qe^{-iq(r-r')}\tilde{G}(q)</math><br><br> |
| − | <math>\square^ | + | <math>\square^2_rG(r,r')=\frac{1}{(2\pi)^2}\int d^4qe^{-iq(r-r')}(-k^2+\frac{\omega^2}{c^2})</math>, where <math>q=(\mathbf{k},\frac{\omega}{c}) \quad</math><br><br> |
| − | But, <math>\square^ | + | But, <math>\square^2_rG(r,r')=\delta^4(r-r')=\frac{1}{(2\pi)^4}\int d^4q e^{-iq(r-r')}</math><br><br> |
∴<math>\tilde{G}(q)=\frac{(2\pi)^2}{(2\pi)^4}\frac{1}{-q^2}= \frac{-1}{(2\pi)^2q^2}</math><br><br> | ∴<math>\tilde{G}(q)=\frac{(2\pi)^2}{(2\pi)^4}\frac{1}{-q^2}= \frac{-1}{(2\pi)^2q^2}</math><br><br> | ||
| − | <math>G( | + | <math>G(r,r')=\frac{-1}{(2\pi)^4} \int d^4qe^{-iq(r-r')} \frac{1}{(k+\frac{\omega}{c})(k-\frac{\omega}{c})}</math><br><br> |
| − | Chose the "retarded" solution, such that the function is zero unless t>t'<br> | + | Chose the "retarded" solution, such that the function is zero unless t>t'<br><br> |
| − | <math>G( | + | <math>G(r,r')=\frac{1}{(2\pi)^4}\int d^3ke^{-i\mathbf{k}(r-r')}\int d(\frac{\omega}{c}) \frac{e^{i\omega(t-t')}}{(\frac{\omega}{c}-k)(\frac{\omega}{c}+k)}\Theta</math><br><br> |
| − | <math>=\frac{1}{(2\pi)^4}\int d^3ke^{-i\mathbf{k}( | + | <math>=\frac{1}{(2\pi)^4}\int d^3ke^{-i\mathbf{k}(r-r')}(2\pi i \frac{e^{ick(t-t')}-e^{-ick(t-t')}}{2k})\Theta</math><br><br> |
| − | <math>=\frac{-2\pi}{(2\pi)^4}\int \frac{k^2dk}{k} \sin\left({ck(t-t')}\right) 2\pi\int_{-i}^i dze^{-ik|\mathbf{ | + | <math>=\frac{-2\pi}{(2\pi)^4}\int \frac{k^2dk}{k} \sin\left({ck(t-t')}\right) 2\pi\int_{-i}^i dze^{-ik|\mathbf{r}-\mathbf{r'}|z}\Theta</math><br><br> |
| − | <math>=\frac{-1}{(2\pi)^2}\left(\frac{1}{2i|\mathbf{ | + | <math>=\frac{-1}{(2\pi)^2}\left(\frac{1}{2i|\mathbf{r}-\mathbf{r'|}}\right)2\int dk sin(ck(t-t')) sin(k|\mathbf{r}-\mathbf{r'}|)\Theta</math><br><br> |
| − | <math>=\frac{1}{(2\pi)^2}\frac{2}{|\mathbf{ | + | <math>=\frac{1}{(2\pi)^2}\frac{2}{|\mathbf{r}-\mathbf{r}'|}\frac{2\pi}{4} \left[2\delta(|\mathbf{r}-\mathbf{r}'|+c(t-t'))-2\delta(|\mathbf{r}-\mathbf{r}'|-c(t-t'))\right]\Theta</math><br><br> |
| − | But the term <math>2\delta(|\mathbf{ | + | But the term <math>2\delta(|\mathbf{r}-\mathbf{r}'|+c(t-t'))\rightarrow 0 \quad\forall\quad t>t'</math><br><br> |
| − | ∴<math> G( | + | ∴<math> G(r,r')=\frac{-1}{4\pi}\quad \frac{\delta(|\mathbf{r}-\mathbf{r}'|-c(t-t'))}{|\mathbf{r}-\mathbf{r}'|}</math><br><br> |
| − | Now to get the <math>G_1( | + | Now to get the <math>G_1(r,r')\quad </math> in the half-space with z>0 with the boundary condition <math>G_1\quad </math> at<math> r_3=z=0 \quad</math> we take the difference:<br><br> |
| − | <math>G_1( | + | <math>G_1(r,r')=\frac{-1}{4\pi}\left(\frac{\delta(|\mathbf{r}-\mathbf{r}'|-c(t-t'))}{|\mathbf{r}-\mathbf{r}'|}-\frac{\delta(|\mathbf{r}-\mathbf{r}'-2z\hat{e_3}|-c(t-t'))}{|\mathbf{r}-\mathbf{r}'-2z\hat{e_3}|}\right)</math><br><br> |
Now use Green's theorem:<br><br> | Now use Green's theorem:<br><br> | ||
| − | Let <math>\mathbf{F}=A( | + | Let <math>\mathbf{F}=A(r)\mathbf{\nabla}G_1(r,r')-G_1(r,r')\mathbf{\nabla}A(r)</math><br><br> |
| − | <math>\int \mathbf{\nabla} \cdot \mathbf{F}d^ | + | <math>\int \mathbf{\nabla} \cdot \mathbf{F}d^4r= \int cdt \int d^3r[\mathbf{\nabla}A \cdot \mathbf{\nabla}G+A\nabla^2G_1-\mathbf{\nabla}G \cdot \mathbf{\nabla}A -G_1\nabla^2A]</math><br><br> |
| − | But <math>\nabla^2G_1( | + | But <math>\nabla^2G_1(r,r')=\delta^4(r-r')+\frac{1}{c^2}\frac{\part^2}{\part t^2}G_1(r,r')</math><br><br> |
| − | <math>\nabla^2A( | + | <math>\nabla^2A(r)=\mu j(r)+\frac{1}{c^2}\frac{\part^2}{\part t^2}A(r)</math>, let <math>j(r)=0 \quad</math><br><br> |
| − | <math>\int \nabla \cdot \mathbf{F} d^ | + | <math>\int \nabla \cdot \mathbf{F} d^4r=A(r')+\frac{1}{c^2}\int d^4r\left[A\frac{\part^2}{\part t^2}G_1 - G_1\frac{\part^2}{\part t^2}A\right]</math><br><br> |
| − | The last term vanishes if <math>G_1( | + | The last term vanishes if <math>G_1(r,r')and A(r)\quad </math> fall off sufficiently fast at <math>t\rightarrow\infin</math>. They do. So:<br><br> |
| − | <math>\int \nabla \cdot \mathbf{F} d^ | + | <math>\int \nabla \cdot \mathbf{F} d^4r=A(r')</math><br><br> |
Now invoke the divergence theorem on the half space <math>z>0 \quad</math>:<br><br> | Now invoke the divergence theorem on the half space <math>z>0 \quad</math>:<br><br> | ||
| − | <math>A( | + | <math>A(r')=-\int d^2r\int cdt\left[A(r)\frac{\part}{\part t}G_1(r,r')-G_1(r,r')\frac{\part}{\part z}A(r)\right]</math>, where the last term is zero by the constriction of<math>G_1(z=0) \quad</math><br><br> |
| − | <math>A( | + | <math>A(r')=-c\int dt\int d^2rA(r)\frac{\part}{\part z}G_1(r,r')</math><br><br> |
To do the t integral, I need to bring out the z derivative. To do this, I first turn it into a z' derivative, using the relation: <br><br><br> | To do the t integral, I need to bring out the z derivative. To do this, I first turn it into a z' derivative, using the relation: <br><br><br> | ||
| − | <math>G_1( | + | <math>G_1(r,r')=\frac{-1}{4\pi}\left(\frac{\delta(|\mathbf{r}-\mathbf{r}'|-c(t-t'))}{|\mathbf{r}-\mathbf{r}'|}-\frac{\delta(|\mathbf{r}-\mathbf{r}''|-c(t-t'))}{|\mathbf{r}-\mathbf{r}''|}\right)</math>, where <math>\mathbf{r}''=\mathbf{r}'-2z'\hat{e_3}</math><br><br> |
| − | <math>\frac{\part}{\part z}G_1( | + | <math>\frac{\part}{\part z}G_1(r,r')=\frac{1}{4\pi}\left(\frac{\part}{\part z}\left(\frac{\delta(|\mathbf{r}-\mathbf{r}'|-c(t-t'))}{|\mathbf{r}-\mathbf{r}'|}-\frac{\delta(|\mathbf{r}-\mathbf{r}''|-c(t-t'))}{|\mathbf{r}-\mathbf{r}''|}\right)\right)</math><br><br> |
| − | ∴ <math>A( | + | ∴ <math>A(r')=\frac{-1}{4\pi}\frac{\part}{\part z'}\int_{z=0} d^2r\left(2\frac{A(\mathbf{r},t'-\frac{\mathbf{r}-\mathbf{r}'}{c}}{\mathbf{r}-\mathbf{r}'}\right)</math><br><br> |
| − | At <math>z=0 \quad </math>, <math>|\mathbf{ | + | At <math>z=0 \quad </math>, <math>|\mathbf{r}-\mathbf{r}'|=\sqrt{r^2+z'^2}=S, dS=\frac{rdr}{\sqrt{r^2+z'^2}}</math><br><br> |
| − | If<math>A(\mathbf{ | + | If<math>A(\mathbf{r},t) \quad</math> is independent of <math>\mathbf{r} \quad</math>, then:<br><br> |
| − | <math>A( | + | <math>A(r')=\frac{-\part}{\part z'}\int_{z'=0}^\infin dS A\left(\mathbf{0},t-\frac{S}{c}\right)=A\left(\mathbf{\emptyset},t'-\frac{z'}{c}\right)</math><br><br> |
This gives us uniform translation of waves at velocity c. More generally: <br><br> | This gives us uniform translation of waves at velocity c. More generally: <br><br> | ||
| − | <math>A( | + | <math>A(r')=\frac{-1}{2\pi}\int_{z=0} d^2r\frac{\part}{\part z'}\left(\frac{A\left(\mathbf{r}, t'-\frac{|\mathbf{r}-\mathbf{r}'|}{c}\right)}{|\mathbf{r}-\mathbf{r}'|}\right)</math><br><br> |
| − | <math>=\frac{-1}{2\pi}\int_{z=0} d^ | + | <math>=\frac{-1}{2\pi}\int_{z=0} d^2r\left(\frac{A\left(\mathbf{r},t'-\frac{|\mathbf{r}-\mathbf{r}'|}{c}\right)}{|\mathbf{r}-\mathbf{r}'|^3}(-z')+\frac{\dot{A}\left(\mathbf{r},t'-\frac{|\mathbf{r}-\mathbf{r}'|}{c}\right)}{|\mathbf{r}-\mathbf{r}'|c}\frac{-z'}{|\mathbf{r}-\mathbf{r}'|}\right)</math><br><br> |
| − | <math>A( | + | <math>A(r')=\frac{-1}{2\pi}\int_{z=0} d^2r\left(\frac{A\left(\mathbf{r},t'-\frac{|\mathbf{r}-\mathbf{r}'|}{c}\right)}{|\mathbf{r}-\mathbf{r}'|^3}(-z')+\frac{1}{c}\frac{\dot{A}\left(\mathbf{r},t'-\frac{|\mathbf{r}-\mathbf{r}'|}{c}\right)}{|\mathbf{r}-\mathbf{r}'|^2}(z')\right)</math><br><br> |
| + | In our case, we consider only those waves which degrade as <math>\frac{1}{r} \quad</math>, so:<br><br> | ||
| + | <math>A(r')=\frac{-1}{2\pi}\int_{z=0} d^2r\left(\frac{1}{c}\frac{\dot{A}\left(\mathbf{r},t'-\frac{|\mathbf{r}-\mathbf{r}'|}{c}\right)}{|\mathbf{r}-\mathbf{r}'|^2}(z')\right)</math><br><br> | ||
| + | <math>A(r')=\frac{-z'}{2\pi c}\int_{z=0} d^2r\left(\frac{\dot{A}\left(\mathbf{r},t'-\frac{|\mathbf{r}-\mathbf{r}'|}{c}\right)}{|\mathbf{r}-\mathbf{r}'|^2}\right)</math><br><br> | ||
| + | In cylindrical coordinates, <math>d^2r=rdrd\phi \quad</math>. Also, <math>\dot{A}\left(\mathbf{r},t'-\frac{|\mathbf{r}-\mathbf{r}'|}{c}\right)=\dot{A_0}\frac{e^{-ik(t'c-|\mathbf{r}-\mathbf{r}'|)}}{|\mathbf{r}-\mathbf{r}'}</math> | ||
Revision as of 19:17, 2 July 2009
Determining Angle for First Diffraction Minimum
We start off with Maxwell's Equation in the Lorentz gauge:
Where:
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle A^\mu = (\mathbf{A},\frac{\Phi} {c}), \square^2=\part_\mu \part^\mu = \nabla^2 - \frac{1}{c^2} \frac{\part}{\part t^2}}
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle j^\mu = (\mathbf{j},c\rho), \part_\mu= (\mathbf{\nabla}, \frac{1}{c} \frac{\part}{\part t})}
Lorentz Gauge: Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle A^\mu = 0 \rArr \mathbf{\nabla} \cdot \mathbf{A}+\frac{1}{c^2} \frac{\part\Phi}{\part t}=0}
Introduce Green's function atFailed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle (\mathbf{r},t)=r \quad}
from some impulse source atFailed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r'=(\mathbf{r}',t') \quad}
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \square^2_rG(r,r')=\delta^4(r-r')}
Let
Then Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle G(q)=\frac{1}{(2\pi)^2} \int d^4qe^{iqr} \tilde{G}(r,0)}
In free space, translational symmetry implies:
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle G(r-r',0)=G(r,r') \quad }
∴Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle G(r,r')=\frac{1}{(2\pi)^2}\int d^4q e^{-iq(r-r')} \tilde{G} (q)}
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \square^2_rG(r,r')=\frac{1}{(2\pi)^2}|int d^4qe^{-iq(r-r')}\tilde{G}(q)}
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \square^2_rG(r,r')=\frac{1}{(2\pi)^2}\int d^4qe^{-iq(r-r')}(-k^2+\frac{\omega^2}{c^2})}
, where
But, Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \square^2_rG(r,r')=\delta^4(r-r')=\frac{1}{(2\pi)^4}\int d^4q e^{-iq(r-r')}}
∴Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \tilde{G}(q)=\frac{(2\pi)^2}{(2\pi)^4}\frac{1}{-q^2}= \frac{-1}{(2\pi)^2q^2}}
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle G(r,r')=\frac{-1}{(2\pi)^4} \int d^4qe^{-iq(r-r')} \frac{1}{(k+\frac{\omega}{c})(k-\frac{\omega}{c})}}
Chose the "retarded" solution, such that the function is zero unless t>t'
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle G(r,r')=\frac{1}{(2\pi)^4}\int d^3ke^{-i\mathbf{k}(r-r')}\int d(\frac{\omega}{c}) \frac{e^{i\omega(t-t')}}{(\frac{\omega}{c}-k)(\frac{\omega}{c}+k)}\Theta}
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle =\frac{1}{(2\pi)^4}\int d^3ke^{-i\mathbf{k}(r-r')}(2\pi i \frac{e^{ick(t-t')}-e^{-ick(t-t')}}{2k})\Theta}
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle =\frac{-2\pi}{(2\pi)^4}\int \frac{k^2dk}{k} \sin\left({ck(t-t')}\right) 2\pi\int_{-i}^i dze^{-ik|\mathbf{r}-\mathbf{r'}|z}\Theta}
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle =\frac{1}{(2\pi)^2}\frac{2}{|\mathbf{r}-\mathbf{r}'|}\frac{2\pi}{4} \left[2\delta(|\mathbf{r}-\mathbf{r}'|+c(t-t'))-2\delta(|\mathbf{r}-\mathbf{r}'|-c(t-t'))\right]\Theta}
But the term Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 2\delta(|\mathbf{r}-\mathbf{r}'|+c(t-t'))\rightarrow 0 \quad\forall\quad t>t'}
∴Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle G(r,r')=\frac{-1}{4\pi}\quad \frac{\delta(|\mathbf{r}-\mathbf{r}'|-c(t-t'))}{|\mathbf{r}-\mathbf{r}'|}}
Now to get the Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle G_1(r,r')\quad }
in the half-space with z>0 with the boundary condition Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle G_1\quad }
at we take the difference:
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle G_1(r,r')=\frac{-1}{4\pi}\left(\frac{\delta(|\mathbf{r}-\mathbf{r}'|-c(t-t'))}{|\mathbf{r}-\mathbf{r}'|}-\frac{\delta(|\mathbf{r}-\mathbf{r}'-2z\hat{e_3}|-c(t-t'))}{|\mathbf{r}-\mathbf{r}'-2z\hat{e_3}|}\right)}
Now use Green's theorem:
Let Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathbf{F}=A(r)\mathbf{\nabla}G_1(r,r')-G_1(r,r')\mathbf{\nabla}A(r)}
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \int \mathbf{\nabla} \cdot \mathbf{F}d^4r= \int cdt \int d^3r[\mathbf{\nabla}A \cdot \mathbf{\nabla}G+A\nabla^2G_1-\mathbf{\nabla}G \cdot \mathbf{\nabla}A -G_1\nabla^2A]}
But Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \nabla^2G_1(r,r')=\delta^4(r-r')+\frac{1}{c^2}\frac{\part^2}{\part t^2}G_1(r,r')}
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \nabla^2A(r)=\mu j(r)+\frac{1}{c^2}\frac{\part^2}{\part t^2}A(r)}
, let
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \int \nabla \cdot \mathbf{F} d^4r=A(r')+\frac{1}{c^2}\int d^4r\left[A\frac{\part^2}{\part t^2}G_1 - G_1\frac{\part^2}{\part t^2}A\right]}
The last term vanishes if Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle G_1(r,r')and A(r)\quad }
fall off sufficiently fast at Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle t\rightarrow\infin}
. They do. So:
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \int \nabla \cdot \mathbf{F} d^4r=A(r')}
Now invoke the divergence theorem on the half space Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle z>0 \quad}
:
, where the last term is zero by the constriction ofFailed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle G_1(z=0) \quad}
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle A(r')=-c\int dt\int d^2rA(r)\frac{\part}{\part z}G_1(r,r')}
To do the t integral, I need to bring out the z derivative. To do this, I first turn it into a z' derivative, using the relation:
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle G_1(r,r')=\frac{-1}{4\pi}\left(\frac{\delta(|\mathbf{r}-\mathbf{r}'|-c(t-t'))}{|\mathbf{r}-\mathbf{r}'|}-\frac{\delta(|\mathbf{r}-\mathbf{r}''|-c(t-t'))}{|\mathbf{r}-\mathbf{r}''|}\right)}
, where Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathbf{r}''=\mathbf{r}'-2z'\hat{e_3}}
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{\part}{\part z}G_1(r,r')=\frac{1}{4\pi}\left(\frac{\part}{\part z}\left(\frac{\delta(|\mathbf{r}-\mathbf{r}'|-c(t-t'))}{|\mathbf{r}-\mathbf{r}'|}-\frac{\delta(|\mathbf{r}-\mathbf{r}''|-c(t-t'))}{|\mathbf{r}-\mathbf{r}''|}\right)\right)}
∴
At Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle z=0 \quad }
, Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle |\mathbf{r}-\mathbf{r}'|=\sqrt{r^2+z'^2}=S, dS=\frac{rdr}{\sqrt{r^2+z'^2}}}
IfFailed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle A(\mathbf{r},t) \quad}
is independent of Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathbf{r} \quad}
, then:
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle A(r')=\frac{-\part}{\part z'}\int_{z'=0}^\infin dS A\left(\mathbf{0},t-\frac{S}{c}\right)=A\left(\mathbf{\emptyset},t'-\frac{z'}{c}\right)}
This gives us uniform translation of waves at velocity c. More generally:
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle A(r')=\frac{-1}{2\pi}\int_{z=0} d^2r\frac{\part}{\part z'}\left(\frac{A\left(\mathbf{r}, t'-\frac{|\mathbf{r}-\mathbf{r}'|}{c}\right)}{|\mathbf{r}-\mathbf{r}'|}\right)}
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle =\frac{-1}{2\pi}\int_{z=0} d^2r\left(\frac{A\left(\mathbf{r},t'-\frac{|\mathbf{r}-\mathbf{r}'|}{c}\right)}{|\mathbf{r}-\mathbf{r}'|^3}(-z')+\frac{\dot{A}\left(\mathbf{r},t'-\frac{|\mathbf{r}-\mathbf{r}'|}{c}\right)}{|\mathbf{r}-\mathbf{r}'|c}\frac{-z'}{|\mathbf{r}-\mathbf{r}'|}\right)}
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle A(r')=\frac{-1}{2\pi}\int_{z=0} d^2r\left(\frac{A\left(\mathbf{r},t'-\frac{|\mathbf{r}-\mathbf{r}'|}{c}\right)}{|\mathbf{r}-\mathbf{r}'|^3}(-z')+\frac{1}{c}\frac{\dot{A}\left(\mathbf{r},t'-\frac{|\mathbf{r}-\mathbf{r}'|}{c}\right)}{|\mathbf{r}-\mathbf{r}'|^2}(z')\right)}
In our case, we consider only those waves which degrade as Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{1}{r} \quad}
, so:
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle A(r')=\frac{-1}{2\pi}\int_{z=0} d^2r\left(\frac{1}{c}\frac{\dot{A}\left(\mathbf{r},t'-\frac{|\mathbf{r}-\mathbf{r}'|}{c}\right)}{|\mathbf{r}-\mathbf{r}'|^2}(z')\right)}
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle A(r')=\frac{-z'}{2\pi c}\int_{z=0} d^2r\left(\frac{\dot{A}\left(\mathbf{r},t'-\frac{|\mathbf{r}-\mathbf{r}'|}{c}\right)}{|\mathbf{r}-\mathbf{r}'|^2}\right)}
In cylindrical coordinates, . Also, Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \dot{A}\left(\mathbf{r},t'-\frac{|\mathbf{r}-\mathbf{r}'|}{c}\right)=\dot{A_0}\frac{e^{-ik(t'c-|\mathbf{r}-\mathbf{r}'|)}}{|\mathbf{r}-\mathbf{r}'}}