Difference between revisions of "Construction of a Tabletop Michelson Interferometer"

From UConn PAN
Jump to navigation Jump to search
Line 47: Line 47:
 
If<math>A(\mathbf{x},t) \quad</math> is independent of <math>\mathbf{x} \quad</math>, then:<br><br>
 
If<math>A(\mathbf{x},t) \quad</math> is independent of <math>\mathbf{x} \quad</math>, then:<br><br>
 
<math>A(x')=\frac{-\part}{\part z'}\int_{z'=0}^\infin dS A\left(\mathbf{0},t-\frac{S}{c}\right)=A\left(\mathbf{\emptyset},t'-\frac{z'}{c}\right)</math><br><br>
 
<math>A(x')=\frac{-\part}{\part z'}\int_{z'=0}^\infin dS A\left(\mathbf{0},t-\frac{S}{c}\right)=A\left(\mathbf{\emptyset},t'-\frac{z'}{c}\right)</math><br><br>
This gives us uniform translations of waves at velocity c.  More generally: <br><br>
+
This gives us uniform translation of waves at velocity c.  More generally: <br><br>
 
<math>A(x')=\frac{-1}{2\pi}\int_{z=0} d^2x\frac{\part}{\part z'}\left(\frac{A\left(\mathbf{x}, t'-\frac{|\mathbf{x}-\mathbf{x}'|}{c}\right)}{|\mathbf{x}-\mathbf{x}'|}\right)</math><br><br>
 
<math>A(x')=\frac{-1}{2\pi}\int_{z=0} d^2x\frac{\part}{\part z'}\left(\frac{A\left(\mathbf{x}, t'-\frac{|\mathbf{x}-\mathbf{x}'|}{c}\right)}{|\mathbf{x}-\mathbf{x}'|}\right)</math><br><br>
 
<math>=\frac{-1}{2\pi}\int_{z=0} d^2x\left(\frac{A\left(\mathbf{x},t'-\frac{|\mathbf{x}-\mathbf{x}'|}{c}\right)}{|\mathbf{x}-\mathbf{x}'|^3}(-z')+\frac{\dot{A}\left(\mathbf{x},t'-\frac{|\mathbf{x}-\mathbf{x}'|}{c}\right)}{|\mathbf{x}-\mathbf{x}'|c}\frac{-z'}{|\mathbf{x}-\mathbf{x}'|}\right)</math><br><br>
 
<math>=\frac{-1}{2\pi}\int_{z=0} d^2x\left(\frac{A\left(\mathbf{x},t'-\frac{|\mathbf{x}-\mathbf{x}'|}{c}\right)}{|\mathbf{x}-\mathbf{x}'|^3}(-z')+\frac{\dot{A}\left(\mathbf{x},t'-\frac{|\mathbf{x}-\mathbf{x}'|}{c}\right)}{|\mathbf{x}-\mathbf{x}'|c}\frac{-z'}{|\mathbf{x}-\mathbf{x}'|}\right)</math><br><br>
 
+
<math>A(x')=\frac{-1}{2\pi}\int_{z=0} d^2x\left(\frac{A\left(\mathbf{x},t'-\frac{|\mathbf{x}-\mathbf{x}'|}{c}\right)}{|\mathbf{x}-\mathbf{x}'|^3}(-z')+\frac{1}{c}\frac{\dot{A}\left(\mathbf{x},t'-\frac{|\mathbf{x}-\mathbf{x}'|}{c}\right)}{|\mathbf{x}-\mathbf{x}'|^2}(z')\right)</math><br><br>
<math>A(x')=\frac{-1}{2\pi}\int_{z=0} d^2x\left(\frac{A\left(\mathbf{x},t'-\frac{|\mathbf{x}-\mathbf{x}'|}{c}\right)}{|\mathbf{x}-\mathbf{x}'|^3}(-z')+\frac{1}{c}\frac{\dot{A}\left(\mathbf{x},t'-\frac{|\mathbf{x}-\mathbf{x}'|}{c}\right)}{|\mathbf{x}-\mathbf{x}'|^2}(z')\right)</math>
 

Revision as of 18:57, 2 July 2009

Determining Angle for First Diffraction Minimum

We start off with Maxwell's Equation in the Lorentz gauge:

Where:

Lorentz Gauge:

Introduce Green's function at (x=t) from some impulse source at x'=(x',t')



Let

Then

In free space, translational symmetry implies:






, where
But,



Chose the "retarded" solution, such that the function is zero unless t>t'










But the term



Now to get the in the half-space with z>0 with the boundary condition at we take the difference:



Now use Green's theorem:

Let



But

, let



The last term vanishes if fall off sufficiently fast at . They do. So:



Now invoke the divergence theorem on the half space :

, where the last term is zero by the constriction of



To do the t integral, I need to bring out the z derivative. To do this, I first turn it into a z' derivative, using the relation:


, where





At ,

If is independent of , then:



This gives us uniform translation of waves at velocity c. More generally: